-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsilero_tg.py
699 lines (562 loc) · 25.3 KB
/
silero_tg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
import tinygrad as tg
from tinygrad import nn, Tensor
from tinygrad.helpers import Timing
from tinygrad.jit import TinyJit
from tinygrad import Device
# Device.DEFAULT = "CPU"
import numpy as np
from silero_vad_v3 import chunks_grouped
def Identity(x):
return x
def load_state_dict_prefix(model, state_dict, prefix=''):
if hasattr(model, 'load_state_dict'):
model.load_state_dict(state_dict, prefix)
else:
t = {k.replace(prefix, ''): v for k, v in state_dict.items() if k.startswith(prefix)}
# print(t)
nn.state.load_state_dict(model, t)
class ConvBlock:
def __init__(self, in_channels: int = 129, out_channels_pw_proj: int = 16, has_out_proj: bool = True) -> None:
self.dw_conv = nn.Conv1d(in_channels=in_channels, out_channels=in_channels, kernel_size=5, padding=2, groups=in_channels)
self.pw_conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels_pw_proj, kernel_size=1)
self.has_out_proj = has_out_proj
if has_out_proj:
self.proj = nn.Conv1d(in_channels=in_channels, out_channels=out_channels_pw_proj, kernel_size=1)
else:
self.proj = lambda x: x
def __call__(self, x):
return self.forward(x)
def load_state_dict(self, state_dict, prefix=''):
t = {k.replace(prefix, '').replace(".0", ''): v for k, v in state_dict.items() if k.startswith(prefix)}
nn.state.load_state_dict(self, t)
def forward(self, x):
dw_conv_result = self.dw_conv(x).relu()
proj_result = self.proj(x)
pw_conv_result = self.pw_conv(dw_conv_result) + proj_result
return pw_conv_result.relu()
class MultiHeadAttention:
scale : float
n_heads : int
has_out_proj : bool
def __init__(self, qkv_in_features: int, qkv_out_features: int, scale: float = 2 * np.sqrt(2), n_heads: int = 2):
self.scale = scale
self.n_heads = n_heads
self.QKV = nn.Linear(in_features=qkv_in_features, out_features=qkv_out_features)
self.has_out_proj = True
if self.has_out_proj:
self.out_proj = nn.Linear(in_features=qkv_in_features, out_features=qkv_in_features)
else:
self.out_proj = Identity
def __call__(self, x):
return self.forward(x)
def forward(self, x: Tensor) -> Tensor:
# bsz, seq, dim, = torch.size(x)
bsz, seq, dim = x.shape
n_heads = self.n_heads
head_dim = dim // self.n_heads
# head_dim = torch.floordiv(dim, n_heads)
# QKV = self.QKV
# _2 = torch.chunk((QKV).forward(x, ), 3, -1)
# q, k, v, = _2
q, k, v = self.QKV(x).chunk(3, dim=-1)
# split heads - process them independently, just Like different elements in the batch
# (bs, seq, hid) -> (seq, bs * head, hid / head) -> (bs * head, seq, hid / head)
k = k.transpose(0, 1).contiguous().reshape(seq, bsz * self.n_heads, head_dim).transpose(0, 1)
# _3 = torch.contiguous(torch.transpose(k, 0, 1))
# n_heads0 = self.n_heads
# _4 = [seq, torch.mul(bsz, n_heads0), head_dim]
# k0 = torch.transpose(torch.view(_3, _4), 0, 1)
q = q.transpose(0, 1).contiguous().reshape(seq, bsz * self.n_heads, head_dim).transpose(0, 1)
# _5 = torch.contiguous(torch.transpose(q, 0, 1))
# n_heads1 = self.n_heads
# _6 = [seq, torch.mul(bsz, n_heads1), head_dim]
# q0 = torch.transpose(torch.view(_5, _6), 0, 1)
v = v.transpose(0, 1).contiguous().reshape(seq, bsz * self.n_heads, head_dim).transpose(0, 1)
# _7 = torch.contiguous(torch.transpose(v, 0, 1))
# n_heads2 = self.n_heads
# _8 = [seq, torch.mul(bsz, n_heads2), head_dim]
# v0 = torch.transpose(torch.view(_7, _8), 0, 1)
value = k @ q.transpose(1, 2) / self.scale
alpha = value.softmax(axis=-1) # (bs * head, seq, hid/head) @ (bs / head, hid / head, seq)
# _9 = torch.matmul(k, torch.transpose(q, 1, 2))
# scale = self.scale
# alpha = _1(torch.div(_9, scale), -1, 3, None, )
attn = alpha @ v # (bs * head, seq, seq) @ (bs * head, seq, hid / head)
# attn = torch.matmul(alpha, v)
# (bs * head, seg, hid / head) -> (seq, bs * head, hid / head) -> (seq, bs, hid) -> (bs, seq, hid)
attn = attn.transpose(0, 1).contiguous().reshape(seq, bsz, dim).transpose(0, 1)
# _10 = torch.contiguous(torch.transpose(attn, 0, 1))
# attn0 = torch.transpose(torch.view(_10, [seq, bsz, dim]), 0, 1)
attn = self.out_proj(attn)
return attn
class TransformerLayer:
def __init__(self, shape: int, att_qkv_in: int, att_qkv_out: int, scale: float = 2 * np.sqrt(2)):
self.attention = MultiHeadAttention(qkv_in_features=att_qkv_in, qkv_out_features=att_qkv_out, scale=scale)
# self.activation = torch.nn.ReLU()
# self.dropout1 = torch.nn.Dropout(0.1)
# self.dropout = torch.nn.Dropout(0.1)
# self.dropout2 = torch.nn.Dropout(0.1)
self.norm1 = nn.LayerNorm(normalized_shape=shape)
self.norm2 = nn.LayerNorm(normalized_shape=shape)
self.linear1 = nn.Linear(in_features=shape, out_features=shape)
self.linear2 = nn.Linear(in_features=shape, out_features=shape)
def __call__(self, x):
return self.forward(x)
def forward(self, x: Tensor) -> Tensor:
# (batch * dims * sequence) => (batch * sequence * dims)
# if self.reshape_inputs:
# x = x.permute(0, 2, 1).contiguous()
x = x.permute(0, 2, 1).contiguous()
attn = self.attention(x)
x = x + attn.dropout(0.1) #dropout1
x = self.norm1(x)
x2 = self.linear2(self.linear1(x).relu().dropout(0.1)) #dropout
x = x + x2.dropout(0.1) #dropout2
x = self.norm2(x)
# (batch * sequence * dims) => (batch * dims * sequence)
# if self.reshape_inputs:
# x = x.permute(0, 2, 1).contiguous()
x = x.permute(0, 2, 1).contiguous()
return x
# BatchNorm1d = nn.BatchNorm2d
class BatchNorm1d(nn.BatchNorm2d):
def __call__(self, x: Tensor) -> Tensor:
return super().__call__(x.unsqueeze(-1)).squeeze(-1)
class Encoder:
def __init__(self):
# 0
transformer = TransformerLayer(shape=16, att_qkv_in=16, att_qkv_out=48, scale=2 * np.sqrt(2))
self.transformer = transformer
# 1 full: in_channels=16, out_channels=16, kernel_size=1, stride=2, padding=0, dilation=1, groups=1, padding_mode='zeros'
conv1d_1 = nn.Conv1d(in_channels=16, out_channels=16, kernel_size=1, stride=2)
self.conv1d_1 = conv1d_1
# 2 full: num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
batch_norm1d_1 = BatchNorm1d(16)
self.batch_norm1d_1 = batch_norm1d_1
# 3
# relu_1 = torch.nn.ReLU()
# self.relu_1 = relu_1
# 4.0, ConvBlock
conv_block_1 = ConvBlock(in_channels=16, out_channels_pw_proj=32)
self.conv_block_1 = conv_block_1
# 5 TransformerLayer
# att 96
transformer_layer_1 = TransformerLayer(shape=32, att_qkv_in=32, att_qkv_out=96, scale=4.0)
self.transformer_layer_1 = transformer_layer_1
# 5.attention MultiHeadAttention(in_features=32, scale=4.0)
# 5.norm1 torch.nn.LayerNorm(normalized_shape=32)
# 5.norm2 torch.nn.LayerNorm(normalized_shape=32)
# 5.linear1 torch.nn.Linear(in_featurs=32, out_features=32)
# 5.linear2 torch.nn.Linear(in_featurs=32, out_features=32)
# 6 Conv1d
# torch.nn.Conv1d(in_channels=32, out_channels=32, kernel_size=1, stride=2, padding=0, dilation=1, groups=1, padding_mode='zeros')
conv1d_2 = nn.Conv1d(in_channels=32, out_channels=32, kernel_size=1, stride=2)
self.conv1d_2 = conv1d_2
# 7 BatchNorm1d
# torch.nn.BatchNorm1d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
batch_norm1d_2 = BatchNorm1d(32)
self.batch_norm1d_2 = batch_norm1d_2
# 8 ReLU
# relu_2 = torch.nn.ReLU()
# self.relu_2 = relu_2
# 9 ConvBlock(in_channels=32, out_channels_pw_proj=32, has_out_proj=False)
conv_block_3 = ConvBlock(in_channels=32, out_channels_pw_proj=32, has_out_proj=False)
self.conv_block_3 = conv_block_3
# 10 TransformerLayer
# att 96
transformer_layer_3 = TransformerLayer(shape=32, att_qkv_in=32, att_qkv_out=96, scale=4.0)
self.transformer_layer_3 = transformer_layer_3
# 11 Conv1d
# torch.nn.Conv1d(in_channels=32, out_channels=32, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros')
conv1d_3 = nn.Conv1d(in_channels=32, out_channels=32, kernel_size=1)
self.conv1d_3 = conv1d_3
# 12 BatchNorm1d
# torch.nn.BatchNorm1d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
batch_norm1d_3 = BatchNorm1d(32)
self.batch_norm1d_3 = batch_norm1d_3
# 13
# relu_3 = torch.nn.ReLU()
# self.relu_3 = relu_3
# 14 ConvBlock
conv_block_4 = ConvBlock(in_channels=32, out_channels_pw_proj=64, has_out_proj=True)
self.conv_block_4 = conv_block_4
# 15 TransformerLayer
# att 192
transformer_layer_4 = TransformerLayer(shape=64, att_qkv_in=64, att_qkv_out=192, scale=4 * np.sqrt(2))
self.transformer_layer_4 = transformer_layer_4
# 16 Conv1d
conv1d_4 = nn.Conv1d(in_channels=64, out_channels=64, kernel_size=1)
self.conv1d_4 = conv1d_4
# 17 BatchNorm1d
batch_norm1d_4 = BatchNorm1d(64)
self.batch_norm1d_4 = batch_norm1d_4
# 18 ReLU
# relu_4 = torch.nn.ReLU()
# self.relu_4 = relu_4
def load_state_dict(self, state_dict, prefix=''):
prefix += 'sequential.'
mapping = {
# x0 = self.transformer(x)
'0.': 'transformer.',
# x1 = self.conv1d_1(x0)
'1.': 'conv1d_1.',
# x2 = self.batch_norm1d_1(x1)
'2.': 'batch_norm1d_1.',
# x3 = x2.relu()
# x4 = self.conv_block_1(x3)
'4.dw_conv.0.': 'conv_block_1.dw_conv.',
'4.pw_conv.0.': 'conv_block_1.pw_conv.',
'4.proj.': 'conv_block_1.proj.',
# x5 = self.transformer_layer_1(x4)
# x5 = self.transformer_layer_1(x4)
'5.': 'transformer_layer_1.',
# x6 = self.conv1d_2(x5)
'6.': 'conv1d_2.',
# x7 = self.batch_norm1d_2(x6)
'7.': 'batch_norm1d_2.',
# x8 = x7.relu()
# x9 = self.conv_block_3(x8)
# x10 = self.transformer_layer_3(x9)
# x11 = self.conv1d_3(x10)
# x12 = self.batch_norm1d_3(x11)
'9.dw_conv.0.': 'conv_block_3.dw_conv.',
'9.pw_conv.0.': 'conv_block_3.pw_conv.',
'9.proj.': 'conv_block_3.proj.',
'10.': 'transformer_layer_3.',
'11.': 'conv1d_3.',
'12.': 'batch_norm1d_3.',
# x13 = x12.relu()
# x14 = self.conv_block_4(x13)
# x15 = self.transformer_layer_4(x14)
# x16 = self.conv1d_4(x15)
# x17 = self.batch_norm1d_4(x16)
'14.dw_conv.0.': 'conv_block_4.dw_conv.',
'14.pw_conv.0.': 'conv_block_4.pw_conv.',
'14.proj.': 'conv_block_4.proj.',
'15.': 'transformer_layer_4.',
'16.': 'conv1d_4.',
'17.': 'batch_norm1d_4.',
# x18 = x17.relu()
}
t = {}
for k, v in state_dict.items():
if k.startswith(prefix):
k = k.replace(prefix, '')
for p in mapping:
if k.startswith(p):
k = k.replace(p, mapping[p])
if 'num_batches_tracked' in k:
v = v.reshape((1,))
t[k] = v
# print('\n'.join(list(t.keys())))
nn.state.load_state_dict(self, t)
def __call__(self, x: Tensor) -> Tensor:
return self.forward(x)
def forward(self, x: Tensor) -> Tensor:
x0 = self.transformer(x)
x1 = self.conv1d_1(x0)
x2 = self.batch_norm1d_1(x1)
x3 = x2.relu()
x4 = self.conv_block_1(x3)
x5 = self.transformer_layer_1(x4)
x6 = self.conv1d_2(x5)
x7 = self.batch_norm1d_2(x6)
x8 = x7.relu()
x9 = self.conv_block_3(x8)
x10 = self.transformer_layer_3(x9)
x11 = self.conv1d_3(x10)
x12 = self.batch_norm1d_3(x11)
x13 = x12.relu()
x14 = self.conv_block_4(x13)
x15 = self.transformer_layer_4(x14)
x16 = self.conv1d_4(x15)
x17 = self.batch_norm1d_4(x16)
x18 = x17.relu()
return x18
# self.sequential = torch.nn.Sequential(transformer,
# conv1d_1,
# batch_norm1d_1,
# relu_1,
# conv_block_1,
# transformer_layer_1,
# conv1d_2,
# batch_norm1d_2,
# relu_2,
# conv_block_3,
# transformer_layer_3,
# conv1d_3,
# batch_norm1d_3,
# relu_3,
# conv_block_4,
# transformer_layer_4,
# conv1d_4,
# batch_norm1d_4,
# relu_4)
class LSTMCell:
def __init__(self, input_size, hidden_size, dropout):
self.dropout = dropout
self.weights_ih = Tensor.uniform(hidden_size * 4, input_size)
self.bias_ih = Tensor.uniform(hidden_size * 4)
self.weights_hh = Tensor.uniform(hidden_size * 4, hidden_size)
self.bias_hh = Tensor.uniform(hidden_size * 4)
def __call__(self, x: Tensor, hc: Tensor) -> Tensor:
# print(x.shape)
gates = x.linear(self.weights_ih.T, self.bias_ih) + hc[:x.shape[0]].linear(self.weights_hh.T, self.bias_hh)
i, f, g, o = gates.chunk(4, 1)
i, f, g, o = i.sigmoid(), f.sigmoid(), g.tanh(), o.sigmoid()
c = (f * hc[x.shape[0]:]) + (i * g)
h = (o * c.tanh()).dropout(self.dropout)
# print(c.shape, h.shape)
newhc = Tensor.cat(h, c)
# print(newhc.shape)
return newhc
class LSTM:
def __init__(self, input_size, hidden_size, layers, dropout):
self.input_size = input_size
self.hidden_size = hidden_size
self.layers = layers
self.cells = [LSTMCell(input_size, hidden_size, dropout) if i == 0 else LSTMCell(hidden_size, hidden_size, dropout if i != layers - 1 else 0) for i in range(layers)]
# TODO(irwin): _asdict?
def load_state_dict(self, state_dict, prefix=''):
mapping = {
"weight_ih_l0": "cells.0.weights_ih",
"weight_hh_l0": "cells.0.weights_hh",
"bias_ih_l0": "cells.0.bias_ih",
"bias_hh_l0": "cells.0.bias_hh",
"weight_ih_l1": "cells.1.weights_ih",
"weight_hh_l1": "cells.1.weights_hh",
"bias_ih_l1": "cells.1.bias_ih",
"bias_hh_l1": "cells.1.bias_hh"
}
t = {mapping[k.replace(prefix, '')]: v for k, v in state_dict.items() if k.startswith(prefix)}
# print('\n'.join(t.keys()))
nn.state.load_state_dict(self, t)
# @TinyJit
def __call__(self, x: Tensor, hc: Tensor) -> tuple[Tensor, Tensor]:
# @TinyJit
def _do_step(x_: Tensor, hc_: Tensor) -> Tensor:
return self.do_step(x_, hc_)
if hc is None:
hc = Tensor.zeros(self.layers, 2 * x.shape[1], self.hidden_size, requires_grad=False)
output = None
for t in range(x.shape[0]):
# hc = self.do_step(x[t], hc) # TODO: why do we need to do this?
hc = _do_step(x[t] + 1 - 1, hc) # TODO: why do we need to do this?
if output is None:
output = hc[-1:, :x.shape[1]]
else:
output = output.cat(hc[-1:, :x.shape[1]], dim=0)
print(output.shape)
return output.realize(), hc.realize()
def do_step(self, x: Tensor, hc: Tensor) -> Tensor:
print(x.shape)
new_hc = [x]
for i, cell in enumerate(self.cells):
new_hc.append(cell(new_hc[i][:x.shape[0]], hc[i]))
stacked = Tensor.stack(new_hc[1:])
# print(stacked.shape)
return stacked
class Decoder:
def __init__(self):
# decoder.1.weight
# decoder.1.bias
self.conv1d = nn.Conv1d(in_channels=64, out_channels=2, kernel_size=1)
def __call__(self, x: Tensor) -> Tensor:
return self.forward(x)
def forward(self, x: Tensor) -> Tensor:
return self.conv1d(x.relu()).mean(axis=2, keepdim=True).sigmoid()
# torch.nn.ReLU(),
# torch.nn.Conv1d(in_channels=64, out_channels=2, kernel_size=1),
# torch.nn.AdaptiveAvgPool1d(output_size=1),
# torch.nn.Sigmoid()
def load_state_dict(self, state_dict, prefix=''):
t = {k.replace(prefix, 'conv1d.'): v for k, v in state_dict.items() if k.startswith(prefix)}
# print(t)
nn.state.load_state_dict(self, t)
class STFT:
filter_length : int
hop_length : int
win_length : int
window : str
def __init__(self):
self.filter_length: int = 256
self.hop_length : int = 64
self.win_length : int = 256
self.window : str = "hann"
self.forward_basis_buffer = Tensor.zeros(258, 1, 256)
def forward(self, input_data: Tensor) -> Tensor:
return self.transform_(input_data)
def transform_(self, input_data: Tensor) -> Tensor:
filter_length = self.filter_length
num_batches = input_data.shape[0]
num_samples = input_data.shape[1]
# [N, 1536] -> [N, 1, 1536]
for_padding = input_data.reshape([num_batches, 1, num_samples])
half = filter_length // 2
# padded = for_padding.pad([half, half, 0, 0], "reflect", 0.)
padded = simple_pad(for_padding, half)
# [N, 1, 1536] -> [N, 1, 1, 1, 1536]
padded_squeezed = padded
forward_transform = padded_squeezed.conv2d(self.forward_basis_buffer, stride=self.hop_length)
# print(forward_transform.shape)
cutoff = half + 1
real_part = forward_transform[:, :cutoff, :]
imag_part = forward_transform[:, cutoff:, :]
magnitude = Tensor.sqrt(real_part ** 2 + imag_part ** 2)
return magnitude
# 1d pad with reflect across last dim a tensor of shape [N, 1, S]
def simple_pad(x: Tensor, pad: int) -> Tensor:
left_pad = x[:, :, 1: 1+pad].flip(-1)
right_pad = x[:, :, -1 - pad: -1].flip(-1)
return Tensor.cat(left_pad, x, right_pad, dim=2)
class AdaptiveAudioNormalization:
filter_: Tensor
to_pad: int
def __init__(self):
self.to_pad = 3
self.filter_ = Tensor.zeros(1, 1, 7)
def forward(self, spect: Tensor) -> Tensor:
megabyte: int = 1024 * 1024
spect = (spect * megabyte + 1.0).log()
if len(spect.shape) == 2:
spect = spect[None, :, :]
mean = spect.mean(1, keepdim=True)
mean = simple_pad(mean, self.to_pad)
mean = mean.conv2d(self.filter_)
mean_mean = mean.mean(-1, keepdim=True)
spect = spect.add(-mean_mean)
return spect
class Silero:
def __init__(self):
self.feature_extractor = STFT()
self.adaptive_normalization = AdaptiveAudioNormalization()
self.first_layer = ConvBlock()
self.encoder = Encoder()
self.lstm = LSTM(64, 64, 2, 0.1)
self.decoder = Decoder()
def load_state_dict(self, silero_state_dict_tg):
load_state_dict_prefix(self.feature_extractor, silero_state_dict_tg, prefix="feature_extractor.")
load_state_dict_prefix(self.adaptive_normalization, silero_state_dict_tg, prefix="adaptive_normalization.")
load_state_dict_prefix(self.first_layer, silero_state_dict_tg, prefix="first_layer.")
load_state_dict_prefix(self.encoder, silero_state_dict_tg, prefix="encoder.")
load_state_dict_prefix(self.lstm, silero_state_dict_tg, "lstm.")
load_state_dict_prefix(self.decoder, silero_state_dict_tg, "decoder.1.")
def __call__(self, x: Tensor, *args) -> Tensor:
return self.forward(x, *args)
# @TinyJit
def forward(self, x: Tensor, h: Tensor, c: Tensor):
if False:
if hc is None:
# [layers, batch, features]
# h [2, 1, 64]
# +
# c [2, 1, 64]
hc = Tensor.zeros(2, 2, 64)
hc = Tensor.cat(h, c, dim=1)
@TinyJit
def not_lstm(x):
x = self.feature_extractor.forward(x)
x = self.adaptive_normalization.forward(x)
x = self.first_layer(x)
x = self.encoder(x)
return x.realize()
with Timing("not lstm: "):
x = not_lstm(x)
# print(x.shape)
# with Timing("adaptive_normalization: "):
# with Timing("first_layer: "):
# with Timing("encoder: "):
# (batch, feature, seq) - > (seq, batch, feature)
test_batch = False
if test_batch:
x = x.cat(x)
batch_size = x.shape[0]
hctg = hc
with Timing("lstm: "):
if batch_size > 1:
if True:
# NOTE(irwin): batch support for sequential chunks, unbatches lstm processing (untested with batch_size > 1 yet)
res = []
batches = x
for batch in range(batch_size):
permx = batches[batch].unsqueeze(0).permute([2, 0, 1])
# print(permx.shape)
x = self.lstm(permx, hctg)
x, hc = x[0], x[1]
res.append(x)
hctg = hc
x = Tensor.cat(*res, dim=1)
else:
# res = []
print(f"x.shape: {x.shape}")
batches = x.reshape(1, 64, -1) # [B, 64, 7]
print(f"batches.shape: {batches.shape}")
print(f"hctg.shape: {hctg.shape}")
x = self.lstm(x.permute([2, 0, 1]), hctg)
x, hc = x[0], x[1]
# for batch in range(batch_size):
# permx = batches[batch].unsqueeze(0).permute([2, 0, 1])
# # print(permx.shape)
# x = self.lstm(permx, hctg)
# x, hc = x[0], x[1]
# res.append(x)
# hctg = hc
# x = Tensor.cat(*res, dim=1)
else:
x = self.lstm(x.permute([2, 0, 1]), hctg)
x, hc = x[0], x[1]
# decoder [7, 1, 64] -> [1, 64, 7] (seq, batch, feature) -> (batch, feature, seq)
x = x.permute([1, 2, 0])
if test_batch:
hc = hc.permute(1, 2, 0)
hc1 = hc[:2]
hc2 = hc[2:4]
assert np.equal(x[0], x[1])
assert np.equal(hc1, hc2)
with Timing("decoder: "):
x = self.decoder(x)
# x = x[0].permute([1, 2, 0])
# x = x.relu()
# x = decoder.conv1d(x)
# x = x.mean(axis=2, keepdim=True)
# x = x.sigmoid()
decoder_out_tg = x
return decoder_out_tg.realize(), hc[:, 0, None, :].realize(), hc[:, 1, None, :].realize()
def foo():
from pathlib import Path
silero = Silero()
silero.load_state_dict(nn.state.torch_load('silero_vad_v3_16k.pt'))
audio_data = np.fromfile(r'RED.s16le', dtype=np.int16)
torch_probs = np.loadtxt("torch.probs")
h0 = np.zeros((2,1,64), dtype=np.float32)
c0 = np.zeros_like(h0)
hn = Tensor(h0)
cn = Tensor(c0)
batch_size = 64
# example random input [batch_size, 1536]
# rand_input = torch.rand([batch_size, 1536])
# silero = torch.jit.script(silero_restored2, example_inputs=(rand_input, hn, cn))
# silero_stateless = torch.jit.trace(silero_restored2.forward_stateless, example_inputs=(rand_input, ))
# silero_stateful = torch.jit.trace(silero_restored2.forward_stateful, example_inputs=(torch.rand((1, 64, 7)), hn, cn))
probs = []
for chunk_batch in chunks_grouped(audio_data, batch_size):
result = silero.forward(Tensor(np.array([c for c in chunk_batch if c is not None])), hn, cn)
prob_result = result[0]
hn = result[1]
cn = result[2]
for n in range(prob_result.shape[0]):
prob = prob_result[n][1].item()
probs.append(prob)
if True:
Path('current.probs').write_text('\n'.join(f"{p:0.6f}" for p in probs))
print(np.abs(probs - torch_probs).mean())
# print(subprocess.check_output(["fc", "current.probs", "torch.probs"]).decode('utf-8', errors='replace'))
if False:
probs = []
for i, chunk in enumerate(chunks(audio_data)):
result = jit_model._model1(torch.from_numpy(chunk), hn, cn).item()
probs.append(result)
break
if __name__ == "__main__":
Tensor.training = False
foo()