-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdqn.py
96 lines (75 loc) · 3.17 KB
/
dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# -*- coding: utf-8 -*-
"""
Created on Fri Feb 7 03:32:57 2025
@author: 33606
"""
import random
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from collections import deque
class DQN(nn.Module):
def __init__(self, state_size=4, action_size=5):
super(DQN, self).__init__()
self.fc1 = nn.Linear(state_size, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, action_size) # Output Q-values for each action
def forward(self, state):
x = torch.relu(self.fc1(state))
x = torch.relu(self.fc2(x))
return self.fc3(x)
class ReplayBuffer:
def __init__(self, capacity, batch_size):
self.memory = deque(maxlen=capacity)
self.batch_size = batch_size
def add(self, experience):
self.memory.append(experience)
def sample(self):
batch = random.sample(self.memory, self.batch_size)
return zip(*batch)
def __len__(self):
return len(self.memory)
class DQNAgent:
def __init__(self, state_size=4, action_size=5, learning_rate=0.001, gamma=0.99,
epsilon=1.0, epsilon_min=0.01, epsilon_decay=0.995):
self.state_size = state_size
self.action_size = action_size
self.q_network = DQN(state_size, action_size)
self.target_network = DQN(state_size, action_size)
self.optimizer = optim.Adam(self.q_network.parameters(), lr=learning_rate)
self.loss_fn = nn.MSELoss()
self.gamma = gamma
self.epsilon = epsilon
self.epsilon_min = epsilon_min
self.epsilon_decay = epsilon_decay
self.replay_buffer = ReplayBuffer(capacity=1000, batch_size=32)
self.update_target_network()
def update_target_network(self):
self.target_network.load_state_dict(self.q_network.state_dict())
def act(self, state):
if np.random.rand() < self.epsilon:
return random.choice(range(self.action_size)) # Random action
state = torch.tensor(state, dtype=torch.float32).unsqueeze(0)
with torch.no_grad():
q_values = self.q_network(state)
return torch.argmax(q_values).item() # Best action
def train(self):
if len(self.replay_buffer) < self.replay_buffer.batch_size:
return
states, actions, rewards, next_states, dones = self.replay_buffer.sample()
states = torch.tensor(states, dtype=torch.float32)
actions = torch.tensor(actions, dtype=torch.int64).unsqueeze(1)
rewards = torch.tensor(rewards, dtype=torch.float32).unsqueeze(1)
next_states = torch.tensor(next_states, dtype=torch.float32)
dones = torch.tensor(dones, dtype=torch.float32).unsqueeze(1)
q_values = self.q_network(states).gather(1, actions)
with torch.no_grad():
max_next_q_values = self.target_network(next_states).max(1)[0].unsqueeze(1)
target_q_values = rewards + (1 - dones) * self.gamma * max_next_q_values
loss = self.loss_fn(q_values, target_q_values)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay