-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_discover.py
348 lines (282 loc) · 16.2 KB
/
main_discover.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import os
import torch
import torch.nn.functional as F
import pytorch_lightning as pl
from pl_bolts.optimizers.lr_scheduler import LinearWarmupCosineAnnealingLR
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.metrics import Accuracy
from utils.data import get_datamodule
from utils.nets import MultiHeadResNet
from utils.eval import ClusterMetrics, ClusterAccuracy
from utils.sinkhorn_knopp import SinkhornKnopp
import numpy as np
from argparse import ArgumentParser
from datetime import datetime
if os.environ.get('REMOTE_PYCHARM_DEBUG_SESSION', False):
import pydevd_pycharm
port = int(os.environ.get('REMOTE_PYCHARM_DEBUG_PORT', "12034"))
pydevd_pycharm.settrace('localhost', port=port, stdoutToServer=True, stderrToServer=True, suspend=False)
parser = ArgumentParser()
parser.add_argument("--dataset", default="CIFAR100", type=str, help="dataset")
parser.add_argument("--imagenet_subset", default="all", type=str, help="imagenet subset ('all' or BREEDS dataset)")
parser.add_argument("--imagenet_split", default="A", type=str, help="imagenet split [A,B,C]")
parser.add_argument("--download", default=False, action="store_true", help="whether to download")
parser.add_argument("--data_dir", default="/path/to/dataset", type=str, help="data directory")
parser.add_argument("--log_dir", default="logs", type=str, help="log directory")
parser.add_argument("--checkpoint_dir", default="checkpoints", type=str, help="checkpoint dir")
parser.add_argument("--checkpoint_freq", default=10, type=int, help="checkpoint frequency")
parser.add_argument("--batch_size", default=512, type=int, help="batch size")
parser.add_argument("--num_workers", default=0, type=int, help="number of workers")
parser.add_argument("--arch", default="resnet18", type=str, help="backbone architecture")
parser.add_argument("--base_lr", default=0.4, type=float, help="learning rate")
parser.add_argument("--min_lr", default=0.001, type=float, help="min learning rate")
parser.add_argument("--momentum_opt", default=0.9, type=float, help="momentum for optimizer")
parser.add_argument("--weight_decay_opt", default=1.5e-4, type=float, help="weight decay")
parser.add_argument("--warmup_epochs", default=10, type=int, help="warmup epochs")
parser.add_argument("--proj_dim", default=256, type=int, help="projected dim")
parser.add_argument("--hidden_dim", default=2048, type=int, help="hidden dim in proj/pred head")
parser.add_argument("--overcluster_factor", default=3, type=int, help="overclustering factor")
parser.add_argument("--num_heads", default=5, type=int, help="number of heads for clustering")
parser.add_argument("--num_hidden_layers", default=1, type=int, help="number of hidden layers")
parser.add_argument("--num_iters_sk", default=3, type=int, help="number of iters for Sinkhorn")
parser.add_argument("--epsilon_sk", default=0.05, type=float, help="epsilon for the Sinkhorn")
parser.add_argument("--temperature", default=0.1, type=float, help="softmax temperature")
parser.add_argument("--comment", default=datetime.now().strftime("%b%d_%H-%M-%S"), type=str)
parser.add_argument("--num_labeled_classes", default=80, type=int, help="number of labeled classes")
parser.add_argument("--num_unlabeled_classes", default=20, type=int, help="number of unlab classes")
parser.add_argument("--pretrained", type=str, default="/path/to/pretrained/model.ckpt")
parser.add_argument("--from_swav", default=False, action="store_true", help="start from SwAV model")
parser.add_argument("--unsupervised", default=False, action="store_true", help="don't use labels at all")
parser.add_argument("--unlabeled_data_only", default=False, action="store_true", help="only use unlabeled data")
parser.add_argument("--multicrop", default=False, action="store_true", help="activates multicrop")
parser.add_argument("--num_large_crops", default=2, type=int, help="number of large crops")
parser.add_argument("--num_small_crops", default=2, type=int, help="number of small crops")
parser.add_argument("--mix_sup_selfsup", default=False, action="store_true", help="mix supervised and selfsupervised")
parser.add_argument("--mix_sup_weight", default=0.5, type=float, help="supervised weight")
class Discoverer(pl.LightningModule):
def __init__(self, **kwargs):
super().__init__()
self.save_hyperparameters({k: v for (k, v) in kwargs.items() if not callable(v)})
num_labeled_classes = self.hparams.num_labeled_classes
# build model
self.model = MultiHeadResNet(
arch=self.hparams.arch,
low_res="CIFAR" in self.hparams.dataset,
num_labeled=num_labeled_classes,
num_unlabeled=self.hparams.num_unlabeled_classes,
proj_dim=self.hparams.proj_dim,
hidden_dim=self.hparams.hidden_dim,
overcluster_factor=self.hparams.overcluster_factor,
num_heads=self.hparams.num_heads,
num_hidden_layers=self.hparams.num_hidden_layers
)
if self.hparams.from_swav:
state_dict = torch.load(self.hparams.pretrained, map_location=self.device)
state_dict = {f"encoder.{k}": v for k, v in state_dict.items()}
missing, unexpected = self.model.load_state_dict(state_dict, strict=False)
assert all(["head" in key for key in missing]), f"Missing keys {missing}"
assert all([("head" in key or "prototypes" in key) for key in unexpected]), f"Unexpected keys {unexpected}"
else:
state_dict = torch.load(self.hparams.pretrained, map_location=self.device)
state_dict = {k: v for k, v in state_dict.items() if ("unlab" not in k)}
self.model.load_state_dict(state_dict, strict=False)
# Sinkorn-Knopp
self.sk = SinkhornKnopp(
num_iters=self.hparams.num_iters_sk, epsilon=self.hparams.epsilon_sk
)
# metrics
metrics_list = [ClusterMetrics(self.hparams.num_heads), ClusterMetrics(self.hparams.num_heads)]
metrics_inc_list = [ClusterMetrics(self.hparams.num_heads), ClusterMetrics(self.hparams.num_heads)]
if not self.hparams.unlabeled_data_only:
metrics_list.append(ClusterAccuracy() if self.hparams.unsupervised else Accuracy())
metrics_inc_list.append(ClusterAccuracy() if self.hparams.unsupervised else Accuracy())
self.metrics = torch.nn.ModuleList(metrics_list)
self.metrics_inc = torch.nn.ModuleList(metrics_inc_list)
# buffer for best head tracking
self.register_buffer("loss_per_head", torch.zeros(self.hparams.num_heads))
self.training_size = 500 * (self.hparams.num_labeled_classes + self.hparams.num_unlabeled_classes)
self.steps = int(self.training_size / args.batch_size)
def configure_optimizers(self):
optimizer = torch.optim.SGD(
self.model.parameters(),
lr=self.hparams.base_lr,
momentum=self.hparams.momentum_opt,
weight_decay=self.hparams.weight_decay_opt,
)
scheduler = LinearWarmupCosineAnnealingLR(
optimizer,
warmup_epochs=self.hparams.warmup_epochs,
max_epochs=self.hparams.max_epochs,
warmup_start_lr=self.hparams.min_lr,
eta_min=self.hparams.min_lr,
)
return [optimizer], [scheduler]
def cross_entropy_loss(self, preds, targets):
preds = F.log_softmax(preds / self.hparams.temperature, dim=-1)
return torch.mean(-torch.sum(targets * preds, dim=-1), dim=-1)
def swapped_prediction(self, logits, targets):
loss = 0
for view in range(self.hparams.num_large_crops):
for other_view in np.delete(range(self.hparams.num_crops), view):
loss += self.cross_entropy_loss(logits[other_view], targets[view])
return loss / (self.hparams.num_large_crops * (self.hparams.num_crops - 1))
def forward(self, x):
return self.model(x)
def on_epoch_start(self):
self.loss_per_head = torch.zeros_like(self.loss_per_head)
def unpack_batch(self, batch):
if self.hparams.dataset == "ImageNet" and not self.hparams.unlabeled_data_only:
views_lab, labels_lab, views_unlab, labels_unlab = batch
views = [torch.cat([vl, vu]) for vl, vu in zip(views_lab, views_unlab)]
labels = torch.cat([labels_lab, labels_unlab])
mask_lab = labels < self.hparams.num_labeled_classes
else:
views, labels = batch
mask_lab = labels < self.hparams.num_labeled_classes
return views, labels, mask_lab
def training_step(self, batch, step):
views, labels, mask_lab = self.unpack_batch(batch)
nlc = self.hparams.num_labeled_classes
# normalize prototypes
self.model.normalize_prototypes()
# forward
outputs = self.model(views)
results = {}
if self.hparams.unlabeled_data_only:
logits = outputs["logits_unlab"]
logits_over = outputs["logits_unlab_over"]
targets = torch.zeros_like(logits)
targets_over = torch.zeros_like(logits_over)
# generate pseudo-labels with sinkhorn-knopp and fill unlab targets
for v in range(self.hparams.num_crops):
for h in range(self.hparams.num_heads):
targets_unlab = self.sk(outputs["logits_unlab"][v, h]).type_as(targets)
targets[v, h] = targets_unlab
targets_over[v, h] = self.sk(outputs["logits_unlab_over"][v, h]).type_as(targets)
else:
# gather outputs
outputs["logits_lab"] = (
outputs["logits_lab"].unsqueeze(1).expand(-1, self.hparams.num_heads, -1, -1)
)
outputs["logits_lab_over"] = outputs["logits_lab"]
logits = torch.cat([outputs["logits_lab"], outputs["logits_unlab"]], dim=-1)
logits_over = torch.cat([outputs["logits_lab_over"], outputs["logits_unlab_over"]], dim=-1)
# create targets
targets_lab = (
F.one_hot(labels[mask_lab], num_classes=nlc)
.float()
.to(self.device)
)
targets = torch.zeros_like(logits)
targets_over = torch.zeros_like(logits_over)
# generate pseudo-labels with sinkhorn-knopp and fill unlab targets
for v in range(self.hparams.num_crops):
for h in range(self.hparams.num_heads):
if self.hparams.unsupervised:
targets_lab_sk = self.sk(outputs["logits_lab"][v, h, mask_lab]).type_as(targets)
targets_lab_over_sk = self.sk(outputs["logits_lab_over"][v, h, mask_lab]).type_as(targets)
targets[v, h, mask_lab, :nlc] = targets_lab_sk
targets_over[v, h, mask_lab, :nlc] = targets_lab_over_sk
elif self.hparams.mix_sup_selfsup:
targets_lab_sk = self.sk(outputs["logits_lab"][v, h, mask_lab]).type_as(targets)
targets_lab_over_sk = self.sk(outputs["logits_lab_over"][v, h, mask_lab]).type_as(targets)
targets_lab_gt = targets_lab.type_as(targets)
alpha = self.hparams.mix_sup_weight
targets[v, h, mask_lab, :nlc] = alpha * targets_lab_gt + (1 - alpha) * targets_lab_sk
targets_over[v, h, mask_lab, :nlc] = alpha * targets_lab_gt + (1 - alpha) * targets_lab_over_sk
kl = torch.nn.functional.kl_div(targets_lab_sk.log(), targets_lab_gt, reduction="batchmean")
results["kl_sup_selfsup"] = kl / (v * h)
else:
targets[v, h, mask_lab, :nlc] = targets_lab.type_as(targets)
targets_over[v, h, mask_lab, :nlc] = targets_lab.type_as(targets)
targets_unlab = self.sk(outputs["logits_unlab"][v, h, ~mask_lab]).type_as(targets)
targets[v, h, ~mask_lab, nlc:] = targets_unlab
targets_over[v, h, ~mask_lab, nlc:] = self.sk(
outputs["logits_unlab_over"][v, h, ~mask_lab]
).type_as(targets)
# compute swapped prediction loss
loss_cluster = self.swapped_prediction(logits, targets)
loss_overcluster = self.swapped_prediction(logits_over, targets_over)
# update best head tracker
self.loss_per_head += loss_cluster.clone().detach()
# total loss
loss_cluster = loss_cluster.mean()
loss_overcluster = loss_overcluster.mean()
loss = (loss_cluster + loss_overcluster) / 2
results["loss"] = loss.detach()
results["loss_cluster"] = loss_cluster.mean()
results["loss_overcluster"] = loss_overcluster.mean()
results["lr"] = self.trainer.optimizers[0].param_groups[0]["lr"]
self.log_dict(results, on_step=False, on_epoch=True, sync_dist=True)
return loss
def validation_step(self, batch, batch_idx, dl_idx):
tag = self.trainer.datamodule.dataloader_mapping[dl_idx]
images, labels = batch
# forward
outputs = self(images) # logitis_lab, logitis_unlab, proj_feats_unlab, logitis_unlab_over, proj_feats_unlab_over
if "unlab" in tag: # use clustering head
preds = outputs["logits_unlab"] # 256*20
logits_lab = outputs["logits_lab"].unsqueeze(0).expand(self.hparams.num_heads, -1, -1)
preds_inc = torch.cat( # 256*100
[
logits_lab,
outputs["logits_unlab"],
],
dim=-1,
)
else: # use supervised classifier
best_head = torch.argmin(self.loss_per_head)
logits_lab = outputs["logits_lab"]
preds = logits_lab
preds_inc = torch.cat(
[logits_lab, outputs["logits_unlab"][best_head]], dim=-1
)
preds = preds.max(dim=-1)[1]
preds_inc = preds_inc.max(dim=-1)[1]
self.metrics[dl_idx].update(preds, labels)
self.metrics_inc[dl_idx].update(preds_inc, labels) ## all
def validation_epoch_end(self, _):
results = [m.compute() for m in self.metrics]
results_inc = [m.compute() for m in self.metrics_inc]
# log metrics
for dl_idx, (result, result_inc) in enumerate(zip(results, results_inc)):
prefix = self.trainer.datamodule.dataloader_mapping[dl_idx]
prefix_inc = "incremental/" + prefix
if "unlab" in prefix:
for (metric, values), (_, values_inc) in zip(result.items(), result_inc.items()):
name = "/".join([prefix, metric])
name_inc = "/".join([prefix_inc, metric])
avg = torch.stack(values).mean()
avg_inc = torch.stack(values_inc).mean()
best = values[torch.argmin(self.loss_per_head)]
best_inc = values_inc[torch.argmin(self.loss_per_head)]
self.log(name + "/avg", avg, sync_dist=True)
self.log(name + "/best", best, sync_dist=True)
self.log(name_inc + "/avg", avg_inc, sync_dist=True)
self.log(name_inc + "/best", best_inc, sync_dist=True)
else:
self.log(prefix + "/acc", result)
self.log(prefix_inc + "/acc", result_inc)
def main(args):
dm = get_datamodule(args, "discover")
run_name = "-".join(["discover", args.arch, args.dataset, args.comment])
tb_logger = pl.loggers.TensorBoardLogger(
save_dir=args.log_dir,
name=run_name
)
model = Discoverer(**args.__dict__)
checkpoint_filename = f'{args.arch}-{args.dataset}-{args.comment}-{{epoch}}'
checkpoint_callback = ModelCheckpoint(dirpath=args.checkpoint_dir, save_top_k=-1,
filename=checkpoint_filename, period=args.checkpoint_freq)
trainer = pl.Trainer.from_argparse_args(
args, logger=tb_logger, callbacks=[checkpoint_callback]
)
trainer.fit(model, dm)
if __name__ == "__main__":
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
args.num_classes = args.num_labeled_classes + args.num_unlabeled_classes
if not args.multicrop:
args.num_small_crops = 0
args.num_crops = args.num_large_crops + args.num_small_crops
main(args)