-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.lua
executable file
·260 lines (227 loc) · 9.63 KB
/
model.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
-- Copyright 2018 Joel Janai, Fatma Güney, Anurag Ranjan and the Max Planck Gesellschaft.
-- All rights reserved.
-- This software is provided for research purposes only.
-- By using this software you agree to the terms of the license file
-- in the root folder.
-- For commercial use, please contact [email protected].
--
-- Copyright (c) 2014, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
require 'nn'
require 'cunn'
require 'optim'
require 'criterions.L2Criterion'
require 'criterions.MBCCriterion'
require 'criterions.MSSIML1Criterion'
require 'criterions.OBCCriterion'
require 'criterions.OBGCCriterion'
require 'criterions.OSSIML1Criterion'
require 'criterions.SmoothnessCriterion'
require 'criterions.ConstVelCriterion'
require 'criterions.SecondOrderSmoothnessCriterion'
require 'criterions.KLDivergenceCriterion'
require 'criterions.OcclusionPriorCriterion'
require 'criterions.penalty.L1_function'
require 'criterions.penalty.quadratic_function'
require 'criterions.penalty.Lorentzian_function'
--[[
1. Create Model
2. Create Criterion
3. Convert model to CUDA
]]--
local latest = 0
if opt.cont then
latest = getLatestModelSaved(opt.save)
if latest > 0 then
opt.epochNumber = latest + 1
opt.retrain = paths.concat(opt.save, 'model_' .. latest .. '.t7')
opt.optimState = paths.concat(opt.save, 'optimState_' .. latest .. '.t7')
end
end
-- 1. Create Network
-- 1.1 If preloading option is set, preload weights from existing models appropriately
if opt.retrain ~= 'none' then
assert(paths.filep(opt.retrain), 'File not found: ' .. opt.retrain)
print('Loading model from file: ' .. opt.retrain)
-- CONVERSION ONLY WORKS WITH 7 LAYERS AND 2 SKIP LAYERS
if latest <= 0 and opt.convert_to_soft then
print("Converting hard constraint model to soft constraint model ...")
-- CREATE A NEW MODEL
paths.dofile('models/' .. opt.netType .. '.lua')
print('=> Creating model from file: models/' .. opt.netType .. '.lua')
model = createModel(opt) -- for the model creation code, check the models/ folder
if opt.backend == 'cudnn' then
require 'cudnn'
cudnn.convert(model, cudnn)
elseif opt.backend ~= 'nn' then
error'Unsupported backend'
end
-- LOAD OLD MODEL
local pre_model = loadDataParallel(opt.retrain, opt.nGPU) -- defined in util.lua
-- if there is a model, there has to be an optimState
assert(paths.filep(opt.optimState), 'File not found: ' .. opt.optimState)
-- Clone unchanged components from hard constraint model to soft constraint model
for m = 1, 90 do
if pre_model.modules[m]:getParameters():nElement() > 0 then
assert(torch.typename(model.modules[m]) == torch.typename(pre_model.modules[m]), 'Not same type!')
assert(model.modules[m]:getParameters():nElement() == pre_model.modules[m]:getParameters():nElement(), 'Not same number of parameters!')
for mm = 1, #model.modules[m].modules do
if model.modules[m].modules[mm].weight then
model.modules[m].modules[mm].weight:copy(pre_model.modules[m].modules[mm].weight)
model.modules[m].modules[mm].bias:copy(pre_model.modules[m].modules[mm].bias)
model.modules[m].modules[mm].gradWeight:copy(pre_model.modules[m].modules[mm].gradWeight)
model.modules[m].modules[mm].gradBias:copy(pre_model.modules[m].modules[mm].gradBias)
end
end
end
end
-- Clone future flow decoder weights to past flow decoder weights and remaining components from hard constraint model to soft constraint model
local src = {30, 45, 60, 75, 90, 94, 110, 128, 146, 164} -- indeces of future flow decoders and remaining components in old model
local dst = {93, 96, 99, 102, 105, 109, 126, 145, 164, 183} -- indeces of past flow decoders and remaining components in new model
for m = 1, #src do
if pre_model.modules[src[m]]:getParameters():nElement() > 0 then
assert(torch.typename(model.modules[dst[m]]) == torch.typename(pre_model.modules[src[m]]), 'Not same type!')
assert(model.modules[dst[m]]:getParameters():nElement() == pre_model.modules[src[m]]:getParameters():nElement(), 'Not same number of parameters!')
for mm = 1, #model.modules[dst[m]].modules do
if model.modules[dst[m]].modules[mm].weight then
model.modules[dst[m]].modules[mm].weight:copy(pre_model.modules[src[m]].modules[mm].weight)
model.modules[dst[m]].modules[mm].bias:copy(pre_model.modules[src[m]].modules[mm].bias)
model.modules[dst[m]].modules[mm].gradWeight:copy(pre_model.modules[src[m]].modules[mm].gradWeight)
model.modules[dst[m]].modules[mm].gradBias:copy(pre_model.modules[src[m]].modules[mm].gradBias)
end
end
end
end
print("New model ".. #model.modules)
print("Old model ".. #pre_model.modules)
-- pre_model = nil
-- collectgarbage()
else
paths.dofile('models/CostVolMulti.lua')
local pre_model = loadDataParallel(opt.retrain, opt.nGPU) -- defined in util.lua
-- if there is a model, there has to be an optimState
assert(paths.filep(opt.optimState), 'File not found: ' .. opt.optimState)
if opt.nGPU>0 then
pre_model:cuda()
end
model = pre_model
end
else
paths.dofile('models/' .. opt.netType .. '.lua')
print('=> Creating model from file: models/' .. opt.netType .. '.lua')
model = createModel(opt) -- for the model creation code, check the models/ folder
if opt.backend == 'cudnn' then
require 'cudnn'
cudnn.convert(model, cudnn)
elseif opt.backend ~= 'nn' then
error'Unsupported backend'
end
end
-- 2. Create Criterion
criterion = nn.L2Criterion()
occ_criterion = nn.L2Criterion()
-- Photometric loss
if opt.pme_criterion == 'BCC' then
print('Using MBCC for pme')
pme_criterion = nn.MBCCriterion()
elseif opt.pme_criterion == 'SSIM' then
print('Using MSSIM for pme')
pme_criterion = nn.MSSIML1Criterion()
pme_criterion.alpha = 1
elseif opt.pme_criterion == 'SSIML1' then
print('Using MSSIM&L1 for pme')
pme_criterion = nn.MSSIML1Criterion()
pme_criterion.alpha = 0.85
elseif opt.pme_criterion == 'CSAD' then
print('Using MCSAD for pme')
pme_criterion = nn.MCSADCriterion()
elseif opt.pme_criterion == 'OBCC' then
print('Using OBCC for pme')
pme_criterion = nn.OBCCriterion()
elseif opt.pme_criterion == 'OBGCC' then
print('Using OBGCC for pme')
pme_criterion = nn.OBGCCriterion()
pme_criterion.alpha = opt.pme_alpha
pme_criterion.beta = opt.pme_beta
pme_criterion.gamm = opt.pme_gamma
elseif opt.pme_criterion == 'OSSIM' then
print('Using OSSIM for pme')
pme_criterion = nn.OSSIML1Criterion()
pme_criterion.alpha = 1
elseif opt.pme_criterion == 'OSSIML1' then
print('Using OSSIM&L1 for pme')
pme_criterion = nn.OSSIML1Criterion()
pme_criterion.alpha = 0.85
elseif opt.pme_criterion == 'OCSAD' then
print('Using OCSAD for pme')
pme_criterion = nn.OCSADCriterion()
end
if pme_criterion then
pme_criterion.F = opt.frames
pme_criterion.past_flow = opt.past_flow
if opt.pme_penalty == 'L1' then
pme_criterion.p = L1Penalty()
elseif opt.pme_penalty == 'Lorentzian' then
pme_criterion.p = LorentzianPenalty()
end
end
if opt.dataset == 'Kitti2015' then
pme_criterion.p = L1Penalty(0.38)
end
-- smoothness loss
if opt.smooth_second_order then
fs_criterion = nn.SecondOrderSmoothnessCriterion()
else
fs_criterion = nn.SmoothnessCriterion()
end
if opt.smooth_flow_penalty == 'L1' then
fs_criterion.p = L1Penalty()
elseif opt.smooth_flow_penalty == 'Lorentzian' then
fs_criterion.p = LorentzianPenalty()
end
-- constant velocity loss
cv_criterion = nn.ConstVelCriterion()
-- occlusion smoothness
os_criterion = nn.SmoothnessCriterion()
if opt.smooth_occ_penalty == 'L1' then
os_criterion.p = L1Penalty()
elseif opt.smooth_occ_penalty == 'Lorentzian' then
os_criterion.p = LorentzianPenalty()
elseif opt.smooth_occ_penalty == 'Dirac' then
os_criterion.p = LorentzianPenalty()
os_criterion.p:set_eps(0.001)
elseif opt.smooth_occ_penalty == 'KL' then
os_criterion = nn.KLDivergenceCriterion()
end
-- occlusion prior
oprior_criterion = nn.OcclusionPriorCriterion()
print('=> Model')
print(model)
-- draw graph (the forward graph, '.fg')
--graph.dot(model.fg, 'Forward Graph', paths.concat(opt.save, 'fwd_graph'))
--graph.dot(model.bg, 'Backward Graph', paths.concat(opt.save, 'bwd_graph'))
print('=> Criterion')
if criterion then print(criterion); criterion:cuda() end
if occ_criterion then print(occ_criterion); occ_criterion:cuda() end
if pme_criterion then print(pme_criterion); pme_criterion:cuda() end
if fs_criterion then print(fs_criterion); fs_criterion:cuda() end
if os_criterion then print(os_criterion); os_criterion:cuda() end
if oprior_criterion then print(oprior_criterion); oprior_criterion:cuda() end
if fprior_criterion then print(fprior_criterion); fprior_criterion:cuda() end
if mask_criterion then print(mask_criterion); mask_criterion:cuda() end
if opt.sizeAverage == false then
if criterion then criterion.sizeAverage = false end
if occ_criterion then occ_criterion.sizeAverage = false end
if pme_criterion then pme_criterion.sizeAverage = false end
if fs_criterion then fs_criterion.sizeAverage = false end
if os_criterion then os_criterion.sizeAverage = false end
if oprior_criterion then oprior_criterion.sizeAverage = false end
if fprior_criterion then fprior_criterion.sizeAverage = false end
if mask_criterion then mask_criterion.sizeAverage = false end
end
collectgarbage()