-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathideal_size.py
62 lines (49 loc) · 2.49 KB
/
ideal_size.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright (c) 2023 Jonathan S. Pollack (https://github.com/JPPhoto)
import math
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InputField,
InvocationContext,
OutputField,
invocation,
invocation_output,
)
from invokeai.app.invocations.model import UNetField, VaeField
from invokeai.backend.model_management import BaseModelType
@invocation_output("ideal_size_output")
class IdealSizeOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
width: int = OutputField(description="The ideal width of the image in pixels")
height: int = OutputField(description="The ideal height of the image in pixels")
@invocation("ideal_size", title="Ideal Size", tags=["math", "ideal_size"], version="1.0.1")
class IdealSizeInvocation(BaseInvocation):
"""Calculates the ideal size for generation to avoid duplication"""
width: int = InputField(default=1024, description="Target width")
height: int = InputField(default=576, description="Target height")
unet: UNetField = InputField(default=None, description="UNet submodel")
vae: VaeField = InputField(default=None, description="Vae submodel")
multiplier: float = InputField(default=1.0, description="Dimensional multiplier")
def trim_to_multiple_of(self, *args, multiple_of=8):
return tuple((x - x % multiple_of) for x in args)
def invoke(self, context: InvocationContext) -> IdealSizeOutput:
aspect = self.width / self.height
dimension = 512 # self.model.unet.config.sample_size * self.model.vae_scale_factor
if self.unet.unet.base_model == BaseModelType.StableDiffusion2:
dimension = 768
elif self.unet.unet.base_model == BaseModelType.StableDiffusionXL:
dimension = 1024
dimension = dimension * self.multiplier
min_dimension = math.floor(dimension * 0.5)
model_area = dimension * dimension # hardcoded for now since all models are trained on square images
if aspect > 1.0:
init_height = max(min_dimension, math.sqrt(model_area / aspect))
init_width = init_height * aspect
else:
init_width = max(min_dimension, math.sqrt(model_area * aspect))
init_height = init_width / aspect
scaled_width, scaled_height = self.trim_to_multiple_of(
math.floor(init_width),
math.floor(init_height),
)
return IdealSizeOutput(width=scaled_width, height=scaled_height)