-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrerun_job.py
executable file
·385 lines (314 loc) · 12.9 KB
/
rerun_job.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
#!/usr/bin/env python3
# rerun_job.py
"""Creates VASP imput files for vasp in the folder projectName/jobFformula
INPUT : the projectDirectory
OUTPUT : creates rerun of the specified project with specified strategy
(static, relax, ...) """
import os
import shutil
import sys
from pymatgen.io.vasp.inputs import Kpoints
from pymatgen.io.vasp.sets import MITRelaxSet
import write_job as launch
import electronic_analysis.rundict_utils as read
import filtering_runs.filter_runs as filter_runs
import rw_utils.platform_id as platform_id
from structure_analysis.drawKpoints import drawkpt
def less_precise_incar(struct):
"low precision parameters"
return(dict(ENCUT=600,
PREC='Normal',
EDIFFG=-1E-01,
EDIFF=1E-04 * struct.num_sites,
# far from minimum : conjugate gradient algorithm (2)
IBRION=2,
LCHARG="True",
SIGMA=0.2,
ISMEAR=0,
LELF="False",
ISYM=0))
def more_precise_incar(struct):
"higher precision parameters"
return(dict( # LCHARG="True",
ENCUT=700,
PREC='Accurate',
EDIFFG=-1E-02,
EDIFF=1E-06 * struct.num_sites,
# Close to the local minimum : RMM-DIIS (1)
IBRION=1,
# SIGMA=0.01,
ISMEAR=-5,
# LELF="True",
ISYM=0))
def ultra_precise_incar():
"VERY HIGH precision parameters"
return(dict(NSW=100,
ENCUT=650,
PREC='Accurate',
ALGO='Normal',
EDIFFG=-1E-3,
EDIFF=1E-8, # * s.num_sites,
# Close to the local minimum : RMM-DIIS (1)
IBRION=1,
# SIGMA=0.01,
# ISMEAR=0,
# LELF = "True",
ISYM=0,
NEDOS=10001,
# EMIN=-8,
# EMAX=8
))
def single_point_incar():
"higher precision parameters without ionic relaxation"
return(dict(NSW=0,
ENCUT=700,
EDIFF_PER_ATOM=1e-06,
EDIFFG=-0.001,
ISMEAR=-5,
SIGMA=0.05,
NELM=300,
PREC='Accurate'))
def prompt_rerun_type():
"""define the type of rerun (rerun_type) and subtype (incar_type)
by user input"""
rerun_type, incar_type = (None, None)
rerun_dict = {'s': 'single_point',
'r': 'relaxation',
'i': 'identical',
'c': 'custom'}
print("\n"+"".join(["[{}]: {}\n".format(*k)
for k in rerun_dict.items()]))
rerun_choice = input(
"rerun type ? : ")
rerun_type = rerun_dict[rerun_choice[0]]
print("rerun chosen type : {}\n".format(rerun_type))
if rerun_type in ["single_point", "relaxation"]:
if rerun_type == "single_point":
incar_dict = {'s': 'static',
'd': 'DOS',
'n': 'non_SCF',
'f': 'fukui',
'o': 'poscar_only',
'p': "parcharg"}
elif rerun_type == "relaxation":
incar_dict = {'l': 'less_precise',
'm': 'more_precise',
'r': 'rebuild_from_scratch',
'u': 'ultra_precise',
'p': 'poscar_only'}
print("\n"+"".join(["[{}]: {}\n".format(*k)
for k in incar_dict.items()]))
incar_choice = input(
"incar type ? : ")
incar_type = incar_dict[incar_choice[0]]
print("incar chosen type : {}\n".format(incar_type))
return(rerun_type, incar_type)
def filtering_runs(rerun_select, rerun_list):
"filter the post-runs to rerun using succesive filters"
selected_runs = rerun_list
if input("apply further selection on runs ? : Y / n ") == "Y":
if rerun_select in ["c"]:
sieve_lvl = filter_runs.select_sieve_level()
selected_runs = filter_runs.hull_filtering(
sieve_lvl, selected_runs)
print("number of selected runs : {}".format(
len(selected_runs)))
if input("folder by folder ? : Y / n ") == "Y":
selected_runs = filter_runs.idv_filtering(selected_runs)
print("nb of structures : {0} ".format(len(rerun_list)))
return rerun_list
def main():
"main function : read runs in folder & rerun them according to user input"
try:
main_dir = sys.argv[1]
except IndexError:
main_dir = os.getcwd()
print("in current folder : {}".format(main_dir))
rerun_type, incar_type = prompt_rerun_type()
select_converged_runs = input(
"Rerun [a]ll / [n]on-converged only / [c] converged-only ? : ")
# do not parse vasprun if all job selected
check_vasprun = 0 if select_converged_runs in ["a"] else 0.9
try:
file_system = input("[j]ob / [p]roject / [s]uper_project ? : ")[0]
except Exception:
file_system = "p"
print("filesystem : {}".format(file_system))
# Create a list of all the valid runs in the selected folders
run_list = read.collect_valid_runs(main_dir, checkDiff=False,
vasprun_parsing_lvl=check_vasprun,
file_system_choice=file_system)
converged_jobs = [d for d in run_list if d.status == 3]
unconverged_jobs = [d for d in run_list if d.status < 3]
# when reruning all jobs, they are all considered as unconverged
if select_converged_runs in ["a", "n"]:
rerun_list = unconverged_jobs
elif select_converged_runs in ["c"]:
rerun_list = converged_jobs
rerun_list = filtering_runs(select_converged_runs, rerun_list)
print("number of valid jobs to rerun : {}".format(len(rerun_list)))
if len(rerun_list) == 0:
print("no valid run")
return 0
print("selected runs : \n {}".format(
[print(rundict.str_id) for rundict in rerun_list]))
try:
perturb = float(
input('Perturb the initial position of atoms ? in Angstrom '))
except Exception as ex:
print("No perturbation")
perturb = 0
dirname = incar_type if incar_type is not None else rerun_type
print("current dirname ={}".format(dirname))
if incar_type == "fukui":
fukui_nelec = float(
input("nb elec for the fukui (>0: added, <0 : removed) ? "))
print("fukui electrons : {}".format(fukui_nelec))
elif rerun_type == "custom":
try:
tmpdir = str(input("Custom directory name ? :"))
if len(tmpdir) > 0:
dirname = tmpdir
print(dirname)
except Exception:
print("error, default dirname to {}".format(dirname))
if file_system in ["p", "s"]:
dirname_path = platform_id.get_file_name(main_dir, dirname)
elif file_system in ["j"]:
dirname_path = rerun_list[0].job_folder
for rundict in rerun_list:
# create Job from a RunDict
job = launch.Job.from_rundict(rundict)
files_to_copy = []
incar = {}
if rerun_type == "identical":
files_to_copy += ['INCAR', 'POTCAR', 'KPOINTS', 'CONTCAR']
# quick and dirty copy
print("identical set generated")
if rerun_type == "relaxation":
if incar_type == "poscar_only":
pass
elif incar_type == "rebuild_from_scratch":
pass
elif incar_type == "less_precise":
incar.update(less_precise_incar(job.structure))
print(" less precise set generated")
elif incar_type == "more_precise":
incar.update(more_precise_incar(job.structure))
print("more precise set generated")
elif incar_type == "ultra_precise":
incar.update(ultra_precise_incar())
print("ultra precise set generated")
elif rerun_type == "custom":
# incar['LDAUU']={'O': 6}
# incar["NCORE"] = 8
# incar["KPAR"] = 2
# incar["NUPDOWN"] = 0
# HSE06
# incar["NSW"] = 0
# incar['LHFCALC'] = "TRUE"
# incar['HFSCREEN'] = 0.2
# paramagnetic
incar.update({
"ISPIN": 1
})
# anti-ferro-magnetic
incar.update({
"ISPIN": 1
})
# kpt = Kpoints.gamma_automatic(kpts=(1, 1, 1), shift=(0, 0, 0))
# job.user_kpoint = kpt
print("yolo!!")
print("MODIFIED PARAMETERS ========", incar)
print("{} set generated".format(dirname))
elif rerun_type == "single_point":
if incar_type == "fukui":
input_set = MITRelaxSet(job.structure)
incar = rundict.parameters["incar"]
incar["NELECT"] = input_set.nelect + fukui_nelec
incar["NSW"] = 0
print("fukui correction added :",
"\nNELECT read {} ==> wrote {}".format(
input_set.nelect, input_set.nelect + fukui_nelec))
elif incar_type == "parcharg":
efermi = rundict.data['efermi']
print(efermi)
incar["LPARD"] = "True"
below_fermi = float(input("Emin (Efermi=0) ?"))
above_fermi = float(input("Emax (Efermi=0) ?"))
incar["EINT"] = "{} {}".format(efermi+below_fermi,
efermi+above_fermi)
dirname += "_{}_{}".format(below_fermi,
above_fermi)
files_to_copy.append("WAVECAR")
elif incar_type in ["static", "DOS"]:
incar.update(single_point_incar())
if incar_type == "DOS":
incar['EMIN'] = -5
incar['EMAX'] = 5
incar["NEDOS"] = 2001
# folder = prev_folder + "/DOS"
# os.mkdir(folder)
kpt_settings = {'reciprocal_density': 1000}
else:
kpt_settings = {'reciprocal_density': 300}
job.user_kpoint = kpt_settings
elif incar_type == "non_SCF":
files_to_copy += ["CHGCAR", "CHG", "linear_KPOINTS"]
incar.update({"IBRION": -1,
"LCHARG": False,
"LORBIT": 11,
"LWAVE": False,
"NSW": 0,
"ISYM": 0,
"ICHARG": 11,
"ISMEAR": 0,
"SIGMA": 0.01
})
for k in ["NELMDL", "MAGMOM"]:
job.user_incar.pop(k, None)
# job.set_job_folder(rerun_dir)
kpt = drawkpt(rundict.structure)
kpt.write_file(os.path.join(
job.old_folder, "linear_KPOINTS"))
job.old_folder = job.job_folder
if file_system == "j":
job.set_job_folder(platform_id.get_file_name(dirname_path, dirname),
explicit_jobpath=True)
else:
if file_system == "p":
job.set_job_folder(dirname_path,
explicit_jobpath=False)
if file_system == "s":
# print(rundict.stacking)
job.set_job_folder(os.path.join(dirname_path,
rundict.stacking),
explicit_jobpath=False)
if incar.get('EDIFF', None) is not None:
incar['EDIFF'] = '{:0.1E}'.format(incar['EDIFF'])
for k in ["MAGMOM", "EINT", "LPARD", "SIGMA"]:
job.user_incar.pop(k, None)
job.user_incar.update(incar)
print("INCAR \n", incar)
print("JOB INCAR\n", job.user_incar)
job.structure.perturb(perturb)
print("explicit jobpath", job.explicit_jobpath)
if rerun_type == "identical":
# like "mkdir -p" (create parent if necessary)
os.makedirs(job.job_folder)
else:
job.write_data_input()
for f_name in files_to_copy:
try:
shutil.copy2('{0.old_folder}/{1}'.format(job, f_name),
'{0.job_folder}/{1}'.format(job, f_name))
except Exception as ex:
print("error when copying", f_name, ex)
if input("[r]emove unconverged folders ? ") == "r":
for rundict in unconverged_jobs:
unconv_dir = rundict.old_folder
# if input("remove {0} ? Y / N ".format(unconv_dir))=="Y" :
shutil.rmtree(unconv_dir)
print("{} deleted ".format(unconv_dir))
if __name__ == '__main__':
main()