-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathlstm.py
88 lines (78 loc) · 3.93 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# pylint:skip-file
import sys
sys.path.insert(0, "../../python")
import mxnet as mx
import numpy as np
from collections import namedtuple
import time
import math
LSTMState = namedtuple("LSTMState", ["c", "h"])
LSTMParam = namedtuple("LSTMParam", ["i2h_weight", "i2h_bias",
"h2h_weight", "h2h_bias"])
LSTMModel = namedtuple("LSTMModel", ["rnn_exec", "symbol",
"init_states", "last_states",
"seq_data", "seq_labels", "seq_outputs",
"param_blocks"])
def lstm(num_hidden, indata, prev_state, param, seqidx, layeridx):
"""LSTM Cell symbol"""
#indata = mx.sym.Dropout(data=indata, p=0.5)
i2h = mx.sym.FullyConnected(data=indata,
weight=param.i2h_weight,
bias=param.i2h_bias,
num_hidden=num_hidden * 4,
name="t%d_l%d_i2h" % (seqidx, layeridx))
h2h = mx.sym.FullyConnected(data=prev_state.h,
weight=param.h2h_weight,
bias=param.h2h_bias,
num_hidden=num_hidden * 4,
name="t%d_l%d_h2h" % (seqidx, layeridx))
gates = i2h + h2h
slice_gates = mx.sym.SliceChannel(gates, num_outputs=4,
name="t%d_l%d_slice" % (seqidx, layeridx))
in_gate = mx.sym.Activation(slice_gates[0], act_type="sigmoid")
in_transform = mx.sym.Activation(slice_gates[1], act_type="tanh")
forget_gate = mx.sym.Activation(slice_gates[2], act_type="sigmoid")
out_gate = mx.sym.Activation(slice_gates[3], act_type="sigmoid")
next_c = (forget_gate * prev_state.c) + (in_gate * in_transform)
next_h = out_gate * mx.sym.Activation(next_c, act_type="tanh")
return LSTMState(c=next_c, h=next_h)
def lstm_unroll(num_lstm_layer, seq_len, num_hidden, num_label):
param_cells = []
last_states = []
for i in range(num_lstm_layer):
param_cells.append(LSTMParam(i2h_weight=mx.sym.Variable("l%d_i2h_weight" % i),
i2h_bias=mx.sym.Variable("l%d_i2h_bias" % i),
h2h_weight=mx.sym.Variable("l%d_h2h_weight" % i),
h2h_bias=mx.sym.Variable("l%d_h2h_bias" % i)))
state = LSTMState(c=mx.sym.Variable("l%d_init_c" % i),
h=mx.sym.Variable("l%d_init_h" % i))
last_states.append(state)
assert(len(last_states) == num_lstm_layer)
# embeding layer
data = mx.sym.Variable('data')
label = mx.sym.Variable('label')
wordvec = mx.sym.SliceChannel(data=data, num_outputs=seq_len, squeeze_axis=1)
hidden_all = []
for seqidx in range(seq_len):
hidden = wordvec[seqidx]
#hidden = flatten[seqidx]
for i in range(num_lstm_layer):
next_state = lstm(num_hidden, indata=hidden,
prev_state=last_states[i],
param=param_cells[i],
seqidx=seqidx, layeridx=i)
hidden = next_state.h
last_states[i] = next_state
#hidden = mx.sym.Dropout(data=hidden, p=0.5)
hidden_all.append(hidden)
hidden_concat = mx.sym.Concat(*hidden_all, dim=0)
pred = mx.sym.FullyConnected(data=hidden_concat, num_hidden=num_label, name='fc')
#label = mx.sym.Reshape(data = label, shape = (-1,))
#label = mx.sym.Cast(data = label, dtype = 'int32')
#pred_slice = mx.sym.SliceChannel(data=pred, num_outputs=111, axis=0)
label_slice = mx.sym.SliceChannel(data=label, num_outputs=seq_len, axis=1)
label_all = [label_slice[t] for t in range(seq_len)]
label_1 = mx.sym.Concat(*label_all, dim=0)
label = mx.sym.Reshape(data=label_1,target_shape=(0,))
sm = mx.sym.SoftmaxOutput(data=pred, label=label, name='softmax')
return sm