-
Notifications
You must be signed in to change notification settings - Fork 0
/
raman_debug.m
259 lines (201 loc) · 7.22 KB
/
raman_debug.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
%
% Debugging the Raman routines
%
% Edited: JFM 15/JUL/2020
path(path,'./Plotting')
path(path,'./Source')
%path(path,'./Steven_dev')
global cnst
% some initialization
cnst = initCnst; % will put more things in initCnst...
pltIncl = initDefaultPlots; % default plots to make
pltIncl.temperature = true; % modify to add the elecron temp
% get the hydro profile
%
dracoFile = "draco_EPsph_JFM.mat";
% set the time slice here
%
tslice = 11;
% variables to import/define set here:
%
addVarFlag.ne = true;
addVarFlag.dLogNedz = true;
addVarFlag.dLogNedr = true;
addVarFlag.Dmn = false;
addVarFlag.te = true;
addVarFlag.ti = false;
addVarFlag.dLnTedz = true;
addVarFlag.dLnTedr = true;
addVarFlag.Vz = true;
addVarFlag.Vr = true;
addVarFlag.Zbar = true;
addVarFlag.Zsqr = true;
% TO DO: add a function called "importAnalyticGrid()" that allows
% you to define analytic hydro profiles, e.g. linearly varying
% density, constant temperature and so on. Everything will still
% be stored in the rayGd structure though.
%
if ~exist('rayGd','var')
disp("loading hydro...")
rayGd = importDracoGrid(dracoFile,tslice,addVarFlag);
disp("done loading hydro")
else
disp("using exisiting hydro")
end
% update if the time slice has changed too
if rayGd.iTime ~= tslice
disp("updating hydro...")
rayGd = importDracoGrid(dracoFile,tslice,addVarFlag);
disp("done updating hydro")
end
%
% initialize and create a launch list and ray bundle for an EM
% wave - if one doesn't already exist
%
% At some point generalize makeRayBundle so that it can launch
% EPWs (JFM)
% Beam 1
%
if ~exist('rayBundleB1','var')
launchList.type = 'laserBeam'; % trigger for 'makeRayBundle'
launchList.mode = 'forward'; % Could be backward also (neg omega?).
launchList.nrays = 20;
launchList.frequency = cnst.omega0; % 1/sec
% center of spherical target
launchList.focalPt = [-400,0]; % microns
launchList.spot = struct('type','SG8','diameter',700);
angle = 180+(-23.3); % (degrees) is measured from "target norm"
launchList.centroid = [cosd(angle),sind(angle)]; % unit vector in
% direction of
% beam propagation
% propagation
launchList.translate = 5.0e3; % distance in um from focus to
% translate so that we are sure to
% be far enough away to start
% Create a ray bundle
rayBundleB1 = makeRayBundle(launchList,rayGd);
% give it a useful name
rayBundleB1.name = 'Omega EP beam #1';
end
if ~exist('rayBundleB2','var')
launchList.type = 'laserBeam'; % trigger for 'makeRayBundle'
launchList.mode = 'forward'; % Could be backward also (neg omega?).
launchList.nrays = 20;
launchList.frequency = cnst.omega0; % 1/sec
% center of spherical target
launchList.focalPt = [-400,0]; % microns
launchList.spot = struct('type','SG8','diameter',700);
angle = 180+(+23.3); % (degres) is measured from "target norm"
launchList.centroid = [cosd(angle),sind(angle)]; % unit vector in
% direction of
% beam propagation
% propagation
launchList.translate = 5.0e3; % distance in um from focus to
% translate so that we are sure to
% be far enough away to start
% Create a ray bundle
rayBundleB2 = makeRayBundle(launchList,rayGd);
% give it the right name
rayBundleB1.name = 'Omega EP beam #2';
end
%
% Initialize the SABS detector
%
sabs = initDetector("SABS (Omega EP)");
sabs.sourceBeams = [rayBundleB1]; % add all source beams before rays
% are pushed
sabs.sourceBeams = [sabs.sourceBeams rayBundleB2];
%
% Integrate bundles
%
% incident laser light - Beam 1
% First push
%
tPush = 3.7; % ps
rayBundleB1 = pushBundle(rayBundleB1,rayGd,tPush,[100 100 100 100]);
% refine the ray push
%
nits = 35;
for i=1:nits
rayBundleB1 = pushBundle(rayBundleB1,rayGd,0.1);
end
% Halt any further integration of these rays
%
rayBundleB1.halt = setHaltAll(rayBundleB1);
%
% Get backscatter Raman on a chosen light trajectory
%
% Define the current source parameters for our detector (time,
% contributing bundle, SRS angle)
%
sabs.sourceParams{1,1} = rayGd.time; % hydrodynamic time
sabs.sourceParams{1,2} = 1; % beam at index 1 in
% sourceBeams array
SRSangle = 220;
sabs.sourceParams{1,3} = SRSangle; % Raman scatter angle in
% degrees clockwise from the
% incident ray
%
% Make some plots
%
% Let's plot it on the density so that we can visualize the ode
% solutions
makePlotList(pltIncl,rayGd);
% add the incident beam and SRS
%
figure(1) % density plot
hold on
% add selected density contours (freq determined by beam #1)
%
addContourPlt(rayBundleB1,rayGd,'nc');
addContourPlt(rayBundleB1,rayGd,'nc4');
addContourPlt(rayBundleB1,rayGd,'nc10');
% Add rays for incident beam #1
%
addBundlePlt(rayBundleB1,'b:');
% Loop over beam #1's rays
%
rSkip = 4;
for chosenRay = 1:rSkip:rayBundleB1.nrays
% for chosenRay = 17:17
traj = rayBundleB1.trajs{chosenRay};
freq = 1.e-12*rayBundleB1.frequency(chosenRay); % ps^-1
% TO DO: We should probably only choose a subset of the trajectory
% points to integrate...
% get backward SRS decay waves
[srsBundle,epwBundle] = getRamanWavevectors_sh(traj,freq,rayGd,SRSangle);
% TO DO: You should probably rename the above function to be called
% "getRamanBundles()" or something like that
% advance the Raman light
%
srsBundle2 = pushBundle(srsBundle,rayGd,0.3);
% advance the Raman EPW
%
epwBundle2 = pushBundle(epwBundle,rayGd,10);
% Checks the change in trajectory of the SRS rays and further
% integrates these rays if the change in direction is greater than the
% allowed amount
%
while ~all(srsBundle2.halt)
srsBundle2.halt = checkPush(srsBundle2);
srsBundle2 = pushBundle(srsBundle2,rayGd,0.1);
end
% add SRS light rays to the plot
%
rayRange = 1:12:srsBundle2.nrays;
addBundlePlt(srsBundle2,'g',rayRange);
% add SRS EPW to the plot
rayRange = 1:12:epwBundle2.nrays;
addBundlePlt(epwBundle2,'r',rayRange);
% Score hits on the detector
% - think about how best to do this...
sabs.frequencies{1,chosenRay} = checkDetector(srsBundle2,sabs);
end
% add some stuff to figure 2 for fun
figure(2)
hold on
addBundlePlt(rayBundleB1,'b:');
% add a quiver plot of the flow velocity
pltIncl = clearPlotList;
pltIncl.quiverVel = true;
makePlotList(pltIncl,rayGd);