-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrobot_test.py
174 lines (150 loc) · 5.82 KB
/
robot_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch, torchvision
import detectron2
from detectron2.utils.logger import setup_logger
setup_logger()
import sys
import shutil
import argparse
import glob
import numpy as np
import os, json, cv2, random
from detectron2 import model_zoo
from defrcn.engine import DefaultPredictor
from defrcn.config import get_cfg, set_global_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
import xml.etree.ElementTree as ET
from detectron2.structures import BoxMode
from fvcore.common.file_io import PathManager
from detectron2.data import DatasetCatalog, MetadataCatalog
from fsod import FSOD
def get_anno(dirname, fileid, classnames):
anno_file = os.path.join(dirname, "Annotations", fileid + ".xml")
jpeg_file = os.path.join(dirname, "JPEGImages", fileid + ".jpg")
tree = ET.parse(anno_file)
r = {
"file_name": jpeg_file,
"image_id": fileid,
"height": int(tree.findall("./size/height")[0].text),
"width": int(tree.findall("./size/width")[0].text),
}
instances = []
for obj in tree.findall("object"):
cls = obj.find("name").text
if not (cls in classnames):
continue
bbox = obj.find("bndbox")
bbox = [
float(bbox.find(x).text)
for x in ["xmin", "ymin", "xmax", "ymax"]
]
bbox[0] -= 1.0
bbox[1] -= 1.0
instances.append(
{
"category_id": classnames.index(cls),
"bbox": bbox,
"bbox_mode": BoxMode.XYXY_ABS,
}
)
r["annotations"] = instances
return r
def iou(pred_box, gt_boxes):
ixmin = np.maximum(pred_box[:, 0], gt_boxes[0])
iymin = np.maximum(pred_box[:, 1], gt_boxes[1])
ixmax = np.minimum(pred_box[:, 2], gt_boxes[2])
iymax = np.minimum(pred_box[:, 3], gt_boxes[3])
iw = np.maximum(ixmax - ixmin + 1.0, 0.0)
ih = np.maximum(iymax - iymin + 1.0, 0.0)
inters = iw * ih
# union
uni = (
(gt_boxes[2] - gt_boxes[0] + 1.0) * (gt_boxes[3] - gt_boxes[1] + 1.0)
+ (pred_box[:, 2] - pred_box[:, 0] + 1.0) * (pred_box[:, 3] - pred_box[:, 1] + 1.0)
- inters
)
overlaps = inters / uni
return overlaps
def get_parser():
parser = argparse.ArgumentParser(description="Detectron2 demo for builtin configs")
parser.add_argument(
"--config-file",
default="configs/voc/robot_competition.yaml",
metavar="FILE",
help="path to config file",
)
parser.add_argument(
"--input",
help="A list of space separated input images; "
"or a single glob pattern such as 'directory/*.jpg'",
)
parser.add_argument(
"--output",
help="A file or directory to save output visualizations. "
"If not given, will show output in an OpenCV window.",
)
parser.add_argument(
"--weights",
help="model weights to load",
)
parser.add_argument(
"--confidence-threshold",
type=float,
default=0.001,
help="Minimum score for instance predictions to be shown",
)
return parser
if __name__ == '__main__':
args = get_parser().parse_args()
fsod_detector = FSOD(
config_file=args.config_file,
model_weights=args.weights,
thresh=args.confidence_threshold
)
image_dir = args.input # '/home/hanj/pyprojects/robot_initial/labelme_images/no_label_images'
save_dir = args.output # '/home/hanj/pyprojects/robot_initial/vis_step0'
if os.path.isdir(save_dir):
shutil.rmtree(save_dir)
os.makedirs(save_dir)
image_paths = glob.glob(os.path.join(image_dir, '*.jpg'))
image_paths.sort()
recall_num = 0
total_num = 0
class_aware = True
for img_pth in image_paths:
# obtain gt
fileid = img_pth.split('/')[-1].split('.')[0]
thing_classes = MetadataCatalog.get(fsod_detector.cfg.DATASETS.TRAIN[0]).thing_classes
GT = get_anno(os.path.dirname(image_dir), fileid, thing_classes)
gt_box_class = GT['annotations'][0]['category_id']
gt_box = GT['annotations'][0]['bbox']
total_num += 1
im = cv2.imread(img_pth)
outputs = fsod_detector.inference(im)
scores = outputs["instances"].to("cpu").scores.numpy()
classes = outputs["instances"].to("cpu").pred_classes.numpy()
if class_aware:
scores[np.where(classes!=gt_box_class)] = 0
preserve_index = np.argmax(scores)
else:
preserve_index = np.argmax(scores)
instances_cpu = outputs["instances"].to("cpu")
instances_cpu.pred_boxes.tensor = instances_cpu.pred_boxes.tensor[preserve_index:preserve_index+1]
instances_cpu.remove('scores') # = [] # instances_cpu.scores[preserve_index:preserve_index+1]
instances_cpu.pred_classes = instances_cpu.pred_classes[preserve_index:preserve_index+1]
pred_boxes = instances_cpu.pred_boxes.tensor.numpy()
pred_classes = instances_cpu.pred_classes
pred_boxes_of_gt_class = pred_boxes[np.where(pred_classes==gt_box_class)]
recall_flag = False
if len(pred_boxes_of_gt_class) > 0:
ious = iou(pred_boxes_of_gt_class, gt_box)
if max(ious) >= 0.5:
recall_num += 1
recall_flag = True
# We can use `Visualizer` to draw the predictions on the image.
v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(fsod_detector.cfg.DATASETS.TRAIN[0]), scale=1.2)
out = v.draw_instance_predictions(instances_cpu)
prefix = 'missed_' if not recall_flag else ''
out_img_path = os.path.join(save_dir, prefix + img_pth.split('/')[-1])
cv2.imwrite(out_img_path, out.get_image()[:, :, ::-1])
print('Recall {}/{}, Score {:.3f}'.format(recall_num, total_num, recall_num / total_num))