-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnew_feature_map.py
124 lines (104 loc) · 4.41 KB
/
new_feature_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=100, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=2, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, kernel_size=5) #1*28*28 -> 20*24*24->20*12*12
self.conv2 = nn.Conv2d(20, 50, kernel_size=5) #20*12*12 -> 50*8*8 -> 50*4*4
self.conv3 = nn.Conv2d(50,500,kernel_size=4) #500*1*1
self.conv4 = nn.Conv2d(500,10,kernel_size=1) #10*1*1
#self.conv2_drop = nn.Dropout2d()
#self.fc1 = nn.Linear(320, 50)
#self.fc2 = nn.Linear(50, 10)
def forward(self, x):
#x = F.relu(F.max_pool2d(self.conv1(x), 2))
#x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
#x = x.view(-1, 320)
#x = F.relu(self.fc1(x))
#x = F.dropout(x, training=self.training)
#x = self.fc2(x)
x = F.max_pool2d(self.conv1(x),2)
x = F.max_pool2d(self.conv2(x),2)
x = F.relu(self.conv3(x))
x = self.conv4(x)
x = torch.squeeze(x)
return F.log_softmax(x)#, dim=1)
model = Net()
if args.cuda:
model.cuda()
def show_feature_map(x,size,rows,colums,name):#assume x is 1*20*24*24 size=24 rows=4 colums=5
res = np.zeros((size * rows, size * colums))
for i in range(rows):
for j in range(colums):
temp = np.squeeze(x[:, colums * i + j,:,:])
res[i*size:(i+1)*size,j*size:(j+1)*size] = temp
#print (res)
#plt.imshow(res,cmap = 'Greys')
plt.imshow(res, cmap='gray')
plt.title("{}".format(name))
plt.axis("off")
plt.show()
model.load_state_dict(torch.load("net-epoch-20_baseline.pth"))
model.train(False)
i = 1
for data, target in test_loader:
#print (data)
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
if i==1:
i+=1
continue
feature_map_conv1 = model.conv1(data) #first conv
feature_map_conv2 = F.max_pool2d(feature_map_conv1, 2)
feature_map_conv2 = model.conv2(feature_map_conv2) #second conv
feature_map_conv3 = F.max_pool2d(feature_map_conv2,2)
feature_map_conv3 = model.conv3(feature_map_conv3) #third conv
break
fm1 = feature_map_conv1.long().cpu()
fm2 = feature_map_conv2.long().cpu()
fm3 = feature_map_conv3.long().cpu()
fm1 = fm1.data.numpy()
fm2 = fm2.data.numpy()
fm3 = fm3.data.numpy()
show_feature_map(fm1,24,4,5,"conv1 feature map")
show_feature_map(fm2,8,5,10,"conv2 feature map")
show_feature_map(fm3,1,20,25,"conv3 feature map")