a. Create a conda virtual environment and install required packages.
conda create -n mctrans pip python=3.7
conda activate mctrans
git clone https://github.com/JiYuanFeng/MCTrans.git
cd MCTrans
python setup.py develop
pip install -r requirements.txt
a. Complie other CUDA operators such as MultiScaleDeformableAttention.
cd mctrans/models/ops/
bash make.sh
c. Create data folder under the MCTrans and link the actual dataset path ($DATA_ROOT).
mkdir data
ln -s $DATA_ROOT data
-
It is recommended to you to convert your dataset (espeacial the label) to standard format. For example, The binary segmengtaion label shoule only contain
0,1
or0,255
. -
If your folder structure is different, you may need to change the corresponding paths in config files.
-
We have upload some preprocessed datasets at drive, you can download and unpack them under the data folder.
MCTrans ├── mctrans ├── data │ ├── pannuke │ │ ├── split-images │ │ ├── split-masks │ │ ├── split-images-npy │ │ ├── split-masks-npy │ ├── cvc-clinic │ │ ├── images │ │ ├── masks │ ├── cvc-colondb │ │ ├── images │ │ ├── masks │ ├── kvasir │ │ ├── images │ │ ├── masks
bash tools/train.sh
TO DO