-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathatom.xml
271 lines (271 loc) · 140 KB
/
atom.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
<id>https://jiahuichen-github.github.io</id>
<title>JiahuiChen-GitHub</title>
<updated>2021-03-09T17:38:33.637Z</updated>
<generator>https://github.com/jpmonette/feed</generator>
<link rel="alternate" href="https://jiahuichen-github.github.io"/>
<link rel="self" href="https://jiahuichen-github.github.io/atom.xml"/>
<subtitle>温故而知新</subtitle>
<logo>https://jiahuichen-github.github.io/images/avatar.png</logo>
<icon>https://jiahuichen-github.github.io/favicon.ico</icon>
<rights>All rights reserved 2021, JiahuiChen-GitHub</rights>
<entry>
<title type="html"><![CDATA[Notes | Combine Label Propagation and Simple Models Out-performs Graph Neural Networks]]></title>
<id>https://jiahuichen-github.github.io/post/notes-or-combining-label-propagation-and-simple-models-out-performs-graph-neural-networks/</id>
<link href="https://jiahuichen-github.github.io/post/notes-or-combining-label-propagation-and-simple-models-out-performs-graph-neural-networks/">
</link>
<updated>2021-03-09T07:20:11.000Z</updated>
<summary type="html"><![CDATA[<p>Under review as a conference paper at ICLR 2021.</p>
]]></summary>
<content type="html"><![CDATA[<p>Under review as a conference paper at ICLR 2021.</p>
<!-- more -->
<h2 id="problem">Problem</h2>
<p>Many ideas of new GNN architectures are adapted from new architectures in models for language (e.g. attention) or vision (w.g. deep CNNs) with the hopes that success will translate to graphs. However, as these models become more complex, understanding their perfoemance gains is a major challenge, and scaling them to large datasets is difficult.</p>
<h2 id="core-idea">Core Idea</h2>
<p>A post-processing model is proposed for node classification. Base Prediction + Label Propagation (Correct & Smooth).</p>
<blockquote>
<p>The key idea is that we expect errors in the base brediction to be positively correlated along edges in the graph.</p>
</blockquote>
<h2 id="correct-and-smooth-model">Correct and Smooth Model</h2>
<ol>
<li>Notations</li>
</ol>
<ul>
<li>Undirected graph <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo separator="true">,</mo><mi>E</mi><mo>)</mo></mrow><annotation encoding="application/x-tex">G = (V, E)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">G</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mclose">)</span></span></span></span>, where there are <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>n</mi><mo>=</mo><mi mathvariant="normal">∣</mi><mi>V</mi><mi mathvariant="normal">∣</mi></mrow><annotation encoding="application/x-tex">n=|V|</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∣</span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span><span class="mord">∣</span></span></span></span> nodes with feature matrix <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>X</mi><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>×</mo><mi>p</mi></mrow></msup></mrow><annotation encoding="application/x-tex">X \in \mathbb{R}^{n\times p}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.72243em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.771331em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbb">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.771331em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mbin mtight">×</span><span class="mord mathdefault mtight">p</span></span></span></span></span></span></span></span></span></span></span></span>.</li>
<li>Adjacency matrix <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span></span></span></span> of graph <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">G</span></span></span></span>. Diagnal degree matrix <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span></span></span></span>. Normalized adjacency matrix <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>S</mi><mo>=</mo><msup><mi>D</mi><mrow><mo>−</mo><mn>1</mn><mi mathvariant="normal">/</mi><mn>2</mn></mrow></msup><mi>A</mi><msup><mi>D</mi><mrow><mo>−</mo><mn>1</mn><mi mathvariant="normal">/</mi><mn>2</mn></mrow></msup></mrow><annotation encoding="application/x-tex">S=D^{-1/2}AD^{-1/2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8879999999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02778em;">D</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span><span class="mord mtight">/</span><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mord mathdefault">A</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02778em;">D</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span><span class="mord mtight">/</span><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span>.</li>
<li>Node set <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span> is split into a disjoint set of unlabled nodes <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span> and labled nodes <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">L</span></span></span></span>. <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">L</span></span></span></span> is further splited into a training set <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>L</mi><mi>t</mi></msub></mrow><annotation encoding="application/x-tex">L_t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> and validation set <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>L</mi><mi>v</mi></msub></mrow><annotation encoding="application/x-tex">L_v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">v</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>.<br>
<img src="https://jiahuichen-github.github.io/post-images/1615296898441.png" alt="" loading="lazy"></li>
</ul>
<ol start="2">
<li>Simple base prediction</li>
</ol>
<ul>
<li>Train a model <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span></span></span></span> to minimize <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mo>∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>L</mi><mi>t</mi></msub></mrow></msub><mi>L</mi><mi>o</mi><mi>s</mi><mi>s</mi><mo>(</mo><mi>f</mi><mo>(</mo><msub><mi>x</mi><mi>i</mi></msub><mo>)</mo><mo separator="true">,</mo><msub><mi>y</mi><mi>i</mi></msub><mo>)</mo></mrow><annotation encoding="application/x-tex">\sum_{i\in L_t} Loss(f(x_i), y_i)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.14981em;vertical-align:-0.39981em;"></span><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.17862099999999992em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mrel mtight">∈</span><span class="mord mtight"><span class="mord mathdefault mtight">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.29634285714285713em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathdefault mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.39981em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">L</span><span class="mord mathdefault">o</span><span class="mord mathdefault">s</span><span class="mord mathdefault">s</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span>, <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span></span></span></span> is either a linear model or a shallow multi-layer perceptron.</li>
<li>From <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span></span></span></span>, a base prediction <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Z</mi><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>×</mo><mi>c</mi></mrow></msup></mrow><annotation encoding="application/x-tex">Z \in \mathbb{R}^{n\times c}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.72243em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">Z</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.771331em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbb">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.771331em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mbin mtight">×</span><span class="mord mathdefault mtight">c</span></span></span></span></span></span></span></span></span></span></span></span> can be obtained.
<blockquote>
<p>In principle, we can use any base predictor for <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Z</mi></mrow><annotation encoding="application/x-tex">Z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">Z</span></span></span></span>, including those based on GNNs.</p>
</blockquote>
</li>
</ul>
<ol start="3">
<li>
<p>Correcting for error in base predictions</p>
<p>Errors in base prediction to be positively correlated along edges in the graph.</p>
<blockquote>
<p>An error at node <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.65952em;vertical-align:0em;"></span><span class="mord mathdefault">i</span></span></span></span> increases the chance of a similar error at neighboring nodes of <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.65952em;vertical-align:0em;"></span><span class="mord mathdefault">i</span></span></span></span>.</p>
</blockquote>
<p>Define an error matrix <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>E</mi><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>×</mo><mi>c</mi></mrow></msup></mrow><annotation encoding="application/x-tex">E\in \mathbb{R}^{n\times c}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.72243em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.771331em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbb">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.771331em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mbin mtight">×</span><span class="mord mathdefault mtight">c</span></span></span></span></span></span></span></span></span></span></span></span>:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>E</mi><msub><mi>L</mi><mi>t</mi></msub></msub><mo>=</mo><msub><mi>Z</mi><msub><mi>L</mi><mi>t</mi></msub></msub><mo>−</mo><msub><mi>Y</mi><msub><mi>L</mi><mi>t</mi></msub></msub><mo separator="true">,</mo><msub><mi>E</mi><msub><mi>L</mi><mi>v</mi></msub></msub><mo>=</mo><mn>0</mn><mo separator="true">,</mo><msub><mi>E</mi><mi>U</mi></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">E_{L_t}=Z_{L_t}-Y_{L_t}, E_{L_v}=0, E_U=0
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.93343em;vertical-align:-0.2501em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.29634285714285713em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathdefault mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2501em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.93343em;vertical-align:-0.2501em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">Z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.29634285714285713em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathdefault mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2501em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.93343em;vertical-align:-0.2501em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em;">Y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.22222em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.29634285714285713em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathdefault mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2501em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.16454285714285719em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">v</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2501em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.10903em;">U</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></p>
<p>Then smooth the error using the label spreading technique:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mover accent="true"><mi>E</mi><mo>^</mo></mover><mo>=</mo><munder><mo><mi>arg</mi><mo></mo><mi>min</mi><mo></mo></mo><mrow><mi>W</mi><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>×</mo><mi>c</mi></mrow></msup></mrow></munder><mi>t</mi><mi>r</mi><mi>a</mi><mi>c</mi><mi>e</mi><mo>(</mo><msup><mi>W</mi><mi>T</mi></msup><mo>(</mo><mi>I</mi><mo>−</mo><mi>S</mi><mo>)</mo><mi>W</mi><mo>)</mo><mo>+</mo><mi>μ</mi><mi mathvariant="normal">∣</mi><mi mathvariant="normal">∣</mi><mi>W</mi><mo>−</mo><mi>E</mi><mi mathvariant="normal">∣</mi><msubsup><mi mathvariant="normal">∣</mi><mi>F</mi><mn>2</mn></msubsup></mrow><annotation encoding="application/x-tex">\hat E=\mathop{\arg\min}\limits_{W\in \mathbb{R}^{n\times c}} trace(W^T(I-S)W)+\mu||W-E||^2_F
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9467699999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9467699999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.16666em;">^</span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.871006em;vertical-align:-0.9796750000000001em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.66786em;"><span style="top:-1.8476949999999999em;margin-left:0em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.13889em;">W</span><span class="mrel mtight">∈</span><span class="mord mtight"><span class="mord mtight"><span class="mord mathbb mtight">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7026642857142857em;"><span style="top:-2.786em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mbin mtight">×</span><span class="mord mathdefault mtight">c</span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span><span class="mop"><span class="mop">ar<span style="margin-right:0.01389em;">g</span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">min</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9796750000000001em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">t</span><span class="mord mathdefault" style="margin-right:0.02778em;">r</span><span class="mord mathdefault">a</span><span class="mord mathdefault">c</span><span class="mord mathdefault">e</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.13889em;">W</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913309999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.07847em;">I</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span><span class="mclose">)</span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">μ</span><span class="mord">∣</span><span class="mord">∣</span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.1141079999999999em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mord">∣</span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-2.4530000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.13889em;">F</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span></span></span></span></span></p>
<p>The solution can be obtained via the iteration <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>E</mi><mrow><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>=</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo><mi>E</mi><mo>+</mo><mi>α</mi><mi>S</mi><msup><mi>E</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup></mrow><annotation encoding="application/x-tex">E^{(t+1)}=(1-\alpha)E+\alpha SE^{(t)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8879999999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathdefault mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mclose">)</span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.8879999999999999em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathdefault mtight">t</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span></span></span></span>, where <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>α</mi><mo>=</mo><mn>1</mn><mi mathvariant="normal">/</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>μ</mi><mo>)</mo></mrow><annotation encoding="application/x-tex">\alpha=1/(1+\mu)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mord">/</span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">μ</span><span class="mclose">)</span></span></span></span> and <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>E</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></msup><mo>=</mo><mi>E</mi></mrow><annotation encoding="application/x-tex">E^{(0)}=E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8879999999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mtight">0</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span></span></span></span>, which converges rapidly to <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mover accent="true"><mi>E</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">\hat E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9467699999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9467699999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.16666em;">^</span></span></span></span></span></span></span></span></span>. Then add the smoothed errors to the base prediction to get corrected predictions <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>Z</mi><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msup><mo>=</mo><mi>Z</mi><mo>+</mo><mover accent="true"><mi>E</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">Z^{(r)}=Z+\hat E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8879999999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">Z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathdefault mtight" style="margin-right:0.02778em;">r</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">Z</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9467699999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9467699999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.16666em;">^</span></span></span></span></span></span></span></span></span>.<br>
However, the propagation cannot completely correct the errors on nall nodes in the graph, as it does not have enough "total mass" because of:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi mathvariant="normal">∣</mi><mi mathvariant="normal">∣</mi><msup><mi>E</mi><mrow><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup><mi mathvariant="normal">∣</mi><msub><mi mathvariant="normal">∣</mi><mn>2</mn></msub><mi mathvariant="normal">∣</mi><mi mathvariant="normal">∣</mi><mo>≤</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo><mi mathvariant="normal">∣</mi><mi mathvariant="normal">∣</mi><mi>E</mi><mi mathvariant="normal">∣</mi><mi mathvariant="normal">∣</mi><mo>+</mo><mi>α</mi><mi mathvariant="normal">∣</mi><mi mathvariant="normal">∣</mi><mi>S</mi><mi mathvariant="normal">∣</mi><msub><mi mathvariant="normal">∣</mi><mn>2</mn></msub><mi mathvariant="normal">∣</mi><mi mathvariant="normal">∣</mi><msup><mi>E</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup><mi mathvariant="normal">∣</mi><msub><mi mathvariant="normal">∣</mi><mn>2</mn></msub><mo>=</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo><mi mathvariant="normal">∣</mi><mi mathvariant="normal">∣</mi><mi>E</mi><mi mathvariant="normal">∣</mi><msub><mi mathvariant="normal">∣</mi><mn>2</mn></msub><mo>+</mo><mi>α</mi><mi mathvariant="normal">∣</mi><mi mathvariant="normal">∣</mi><msup><mi>E</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup><mi mathvariant="normal">∣</mi><msub><mi mathvariant="normal">∣</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">||E^{(t+1)}||_2||\le (1-\alpha)||E||+\alpha ||S||_2||E^{(t)}||_2=(1-\alpha)||E||_2+\alpha||E^{(t)}||_2
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.188em;vertical-align:-0.25em;"></span><span class="mord">∣</span><span class="mord">∣</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.938em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathdefault mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mclose">)</span><span class="mord">∣</span><span class="mord">∣</span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mord">∣</span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.188em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mord">∣</span><span class="mord">∣</span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span><span class="mord">∣</span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord">∣</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.938em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathdefault mtight">t</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mclose">)</span><span class="mord">∣</span><span class="mord">∣</span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mord">∣</span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.188em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mord">∣</span><span class="mord">∣</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.938em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathdefault mtight">t</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></p>
<p>When <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>E</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></msup><mo>=</mo><mi>E</mi></mrow><annotation encoding="application/x-tex">E^{(0)}=E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8879999999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mtight">0</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span></span></span></span>, <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi mathvariant="normal">∣</mi><mi mathvariant="normal">∣</mi><msup><mi>E</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup><mi mathvariant="normal">∣</mi><msub><mi mathvariant="normal">∣</mi><mn>2</mn></msub><mo>≤</mo><mi mathvariant="normal">∣</mi><mi mathvariant="normal">∣</mi><mi>E</mi><mi mathvariant="normal">∣</mi><msub><mi mathvariant="normal">∣</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">||E^{(t)}||_2\le||E||_2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.138em;vertical-align:-0.25em;"></span><span class="mord">∣</span><span class="mord">∣</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathdefault mtight">t</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∣</span><span class="mord">∣</span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mord">∣</span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>. In the end, two variations of scaling the residual are proposed.</p>
<ul>
<li><strong>Autoscale.</strong> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msubsup><mi>Z</mi><mrow><mi>i</mi><mo separator="true">,</mo><mo>:</mo></mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msubsup><mo>=</mo><msub><mi>Z</mi><mrow><mi>i</mi><mo separator="true">,</mo><mo>:</mo></mrow></msub><mo>+</mo><mi>σ</mi><msub><mover accent="true"><mi>E</mi><mo>^</mo></mover><mrow><mi>i</mi><mo separator="true">,</mo><mo>:</mo></mrow></msub><mi mathvariant="normal">/</mi><mi mathvariant="normal">∣</mi><mi mathvariant="normal">∣</mi><msubsup><mover accent="true"><mi>E</mi><mo>^</mo></mover><mrow><mo>:</mo><mo separator="true">,</mo><mi>i</mi></mrow><mi>T</mi></msubsup><mi mathvariant="normal">∣</mi><msub><mi mathvariant="normal">∣</mi><mn>1</mn></msub></mrow><annotation encoding="application/x-tex">Z_{i,:}^{(r)}=Z_{i,:}+\sigma \hat E_{i,:}/||\hat E^T_{:,i}||_1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.4577719999999998em;vertical-align:-0.4129719999999999em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">Z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0448em;"><span style="top:-2.4231360000000004em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mpunct mtight">,</span><span class="mrel mtight">:</span></span></span></span><span style="top:-3.2198em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathdefault mtight" style="margin-right:0.02778em;">r</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4129719999999999em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.969438em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">Z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mpunct mtight">,</span><span class="mrel mtight">:</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.341542em;vertical-align:-0.394772em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">σ</span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9467699999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.16666em;">^</span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mpunct mtight">,</span><span class="mrel mtight">:</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mord">∣</span><span class="mord">∣</span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9467699999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.16666em;">^</span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-2.441336em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mrel mtight">:</span><span class="mpunct mtight">,</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.13889em;">T</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.394772em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> for <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>i</mi><mo>∈</mo><mi>U</mi></mrow><annotation encoding="application/x-tex">i \in U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69862em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">i</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span>, where <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>σ</mi><mo>=</mo><mfrac><mn>1</mn><mrow><mi mathvariant="normal">∣</mi><msub><mi>L</mi><mi>t</mi></msub><mi mathvariant="normal">∣</mi></mrow></mfrac><msub><mo>∑</mo><mrow><mi>j</mi><mo>∈</mo><msub><mi>L</mi><mi>t</mi></msub></mrow></msub><mi mathvariant="normal">∣</mi><mi mathvariant="normal">∣</mi><msub><mi>e</mi><mi>j</mi></msub><mi mathvariant="normal">∣</mi><msub><mi mathvariant="normal">∣</mi><mn>1</mn></msub></mrow><annotation encoding="application/x-tex">\sigma=\frac{1}{|L_t|}\sum_{j\in L_t}||e_j||_1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">σ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.365108em;vertical-align:-0.52em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∣</span><span class="mord mtight"><span class="mord mathdefault mtight">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.29634285714285713em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathdefault mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mord mtight">∣</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.52em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.17862099999999992em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span><span class="mrel mtight">∈</span><span class="mord mtight"><span class="mord mathdefault mtight">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.29634285714285713em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathdefault mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.43581800000000004em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">∣</span><span class="mord">∣</span><span class="mord"><span class="mord mathdefault">e</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>.</li>
<li><strong>Scaled Fixed Diffusion (FDiff-scale).</strong> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>E</mi><mrow><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>=</mo><mo>[</mo><msup><mi>D</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>A</mi><msup><mi>E</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup><msub><mo>]</mo><mi>U</mi></msub></mrow><annotation encoding="application/x-tex">E^{(t+1)}=[D^{-1}AE^{(t)}]_U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8879999999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathdefault mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.138em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02778em;">D</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord mathdefault">A</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathdefault mtight">t</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mclose"><span class="mclose">]</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.10903em;">U</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> and keep fixed <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msubsup><mi>E</mi><mi>L</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msubsup><mo>=</mo><msub><mi>E</mi><mi>L</mi></msub></mrow><annotation encoding="application/x-tex">E^{(t)}_L=E_L</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.338331em;vertical-align:-0.29353099999999993em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0448em;"><span style="top:-2.4064690000000004em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">L</span></span></span><span style="top:-3.2198em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathdefault mtight">t</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.29353099999999993em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">L</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> until convergence to <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mover accent="true"><mi>E</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">\hat E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9467699999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9467699999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.16666em;">^</span></span></span></span></span></span></span></span></span>. And it still effective to select a scaling hyperparameter to produce <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>Z</mi><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msup><mo>=</mo><mi>Z</mi><mo>+</mo><mi>s</mi><mover accent="true"><mi>E</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">Z^{(r)}=Z+s\hat E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8879999999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">Z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathdefault mtight" style="margin-right:0.02778em;">r</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">Z</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9467699999999999em;vertical-align:0em;"></span><span class="mord mathdefault">s</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9467699999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.16666em;">^</span></span></span></span></span></span></span></span></span>.</li>
</ul>
</li>
<li>
<p>Smoothing final predictions</p>
<p>Set the training nodes back to their true labels and use the corrected predictions for the validation and unlabeled nodes.</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>G</mi><msub><mi>L</mi><mi>t</mi></msub></msub><mo>=</mo><msub><mi>Y</mi><msub><mi>L</mi><mi>t</mi></msub></msub><mo separator="true">,</mo><msub><mi>G</mi><mrow><msub><mi>L</mi><mi>v</mi></msub><mo separator="true">,</mo><mi>U</mi></mrow></msub><mo>=</mo><msubsup><mi>Z</mi><mrow><msub><mi>L</mi><mi>v</mi></msub><mo separator="true">,</mo><mi>U</mi></mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msubsup></mrow><annotation encoding="application/x-tex">G_{L_t}=Y_{L_t}, G_{L_v,U}=Z^{(r)}_{L_v,U}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.93343em;vertical-align:-0.2501em;"></span><span class="mord"><span class="mord mathdefault">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.29634285714285713em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathdefault mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2501em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.969438em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em;">Y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.22222em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.29634285714285713em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathdefault mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2501em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.328331em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.16454285714285719em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">v</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mpunct mtight">,</span><span class="mord mathdefault mtight" style="margin-right:0.10903em;">U</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.4744389999999998em;vertical-align:-0.429639em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">Z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0448em;"><span style="top:-2.4064690000000004em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.16454285714285719em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">v</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mpunct mtight">,</span><span class="mord mathdefault mtight" style="margin-right:0.10903em;">U</span></span></span></span><span style="top:-3.2198em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathdefault mtight" style="margin-right:0.02778em;">r</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.429639em;"><span></span></span></span></span></span></span></span></span></span></span></p>
<p>Then iterate <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>G</mi><mrow><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>=</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo><mi>G</mi><mo>+</mo><mi>α</mi><mi>S</mi><msup><mi>G</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup></mrow><annotation encoding="application/x-tex">G^{(t+1)}=(1-\alpha)G+\alpha SG^{(t)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8879999999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault">G</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathdefault mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mclose">)</span><span class="mord mathdefault">G</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.8879999999999999em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span><span class="mord"><span class="mord mathdefault">G</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathdefault mtight">t</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span></span></span></span> with <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>G</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></msup><mo>=</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">G^{(0)}=G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8879999999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault">G</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mtight">0</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">G</span></span></span></span> until to convergence to give the final prediction <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mover accent="true"><mi>Y</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">\hat Y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9467699999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9467699999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">Y</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;">^</span></span></span></span></span></span></span></span></span>.</p>
<blockquote>
<p>The motivation is that adjacent nodes in the graph are likely to have similar labels, which is expected given homophily or assortative properties of a network.</p>
</blockquote>
</li>
</ol>
<h2 id="summary">Summary</h2>
<blockquote>
<p>To review our pipeline, we start with a cheap base prediction <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Z</mi></mrow><annotation encoding="application/x-tex">Z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">Z</span></span></span></span>, using only node features but not the graph structure. After, we estimate errors <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mover accent="true"><mi>E</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">\hat E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9467699999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9467699999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.16666em;">^</span></span></span></span></span></span></span></span></span> by propagating known errors on the training data, resulting in error-corrected predictions <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>Z</mi><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msup><mo>=</mo><mi>Z</mi><mo>+</mo><mover accent="true"><mi>E</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">Z^{(r)} = Z + \hat E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8879999999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">Z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathdefault mtight" style="margin-right:0.02778em;">r</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">Z</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9467699999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9467699999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.16666em;">^</span></span></span></span></span></span></span></span></span>. Finally, we treat these as score vectors on unlabeled nodes, and combine them with the known labels through another LP step to produce smoothed final predictions. We refer to this general pipeline as <strong>Correct and Smooth</strong> (C&S).</p>
</blockquote>
]]></content>
</entry>
<entry>
<title type="html"><![CDATA[Notes | Boost Then Convolve: Gradient Boosting Meets Graph Neural Networks]]></title>
<id>https://jiahuichen-github.github.io/post/notes-or-boost-then-convolve-gradient-boosting-meets-graph-neural-networks/</id>
<link href="https://jiahuichen-github.github.io/post/notes-or-boost-then-convolve-gradient-boosting-meets-graph-neural-networks/">
</link>
<updated>2021-01-29T08:56:49.000Z</updated>
<summary type="html"><![CDATA[<p>ICLR 2021</p>
]]></summary>
<content type="html"><![CDATA[<p>ICLR 2021</p>
<!-- more -->
<h2 id="introduction">Introduction</h2>
<ul>
<li>GNNs have shown great success in learning on graph-structured data.</li>
<li>GBDT are successful for tabular data.</li>
<li>This paper proposes a novel learning architectures for graphs with tabular data, <strong>BGNN</strong>, that combines GBDT with GNN.</li>
</ul>
<h2 id="background">Background</h2>
<ul>
<li>GNN: a mapping function <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>g</mi><mi>θ</mi></msub><mo>:</mo><mo>(</mo><mi>G</mi><mo separator="true">,</mo><mi>X</mi><mo>)</mo><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">g_{\theta}: (G, X)\rightarrow Y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.02778em;">θ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">G</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.07847em;">X</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">Y</span></span></span></span>, which utilizing the graph's topology.</li>
<li>GBDT: a iteration structure of trees <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>f</mi><mi>t</mi></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mi>f</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>ϵ</mi><msup><mi>h</mi><mi>t</mi></msup><mo>(</mo><mi>x</mi><mo>)</mo></mrow><annotation encoding="application/x-tex">f^t(x)=f^{t-1}(x)+\epsilon h^t(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.043556em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7935559999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">t</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.043556em;vertical-align:-0.25em;"></span><span class="mord mathdefault">ϵ</span><span class="mord"><span class="mord mathdefault">h</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7935559999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">t</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span></span></span></span>.</li>
</ul>
<h2 id="bgnn">BGNN</h2>
<ol>
<li>Problems
<ul>
<li>How to train GBDT and GNN jointly?</li>
</ul>
<blockquote>
<p>Indeed, optimizations of GBDT and GNN follow different approaches: the parameters of GNN are optimized via gradient descent, while GBDT is constructed iteratively and the decision trees remain fixed after being constructed (decision trees are based on hard splits of the feature space which makes them non-differentiable).</p>
</blockquote>
</li>
<li>Core idea
<ul>
<li>Train a new decision tree in each epoch to correct the input of GNN.</li>
</ul>
</li>
<li>Model Architecture<br>
<img src="https://jiahuichen-github.github.io/post-images/1612326221207.png" alt="" loading="lazy"></li>
<li>Implementation Details
<ul>
<li><strong>Pass to GNN</strong> module is trainable.</li>
<li>The target for the next decision tree in <strong>Step 5</strong> is the difference between the optimized node features <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>X</mi><mo mathvariant="normal">′</mo></msup></mrow><annotation encoding="application/x-tex">X'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.751892em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span> in <strong>Step 2</strong> and the feature <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>f</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow><annotation encoding="application/x-tex">f(X)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.07847em;">X</span><span class="mclose">)</span></span></span></span> in <strong>Step 1</strong>.</li>
</ul>
</li>
<li>Interpretation
<ul>
<li>GBDT as an embedding layer for GNN.</li>
<li>GNN as a parametric loss function for GBDT.</li>
</ul>
<blockquote>
<p>In the former case, GBDT transforms the original input features <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07847em;">X</span></span></span></span> to new node features <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>X</mi><mo mathvariant="normal">′</mo></msup></mrow><annotation encoding="application/x-tex">X'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.751892em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span> which are then passed to GNN. In the latter case, one can see BGNN as a standard gradient boosted training where GNN acts as a complex loss function that depends on the graph topology.</p>
</blockquote>
</li>
</ol>
<h2 id="thinking-points">Thinking Points</h2>
<ul>
<li>Flexible combination of different algorithms.</li>
</ul>
]]></content>
</entry>
<entry>
<title type="html"><![CDATA[Notes | Graph-Based Kinship Reasoning Network [ICME 2020]]]></title>
<id>https://jiahuichen-github.github.io/post/notesgraph-based-kinship-reasoning-network/</id>
<link href="https://jiahuichen-github.github.io/post/notesgraph-based-kinship-reasoning-network/">
</link>
<updated>2021-01-24T03:15:42.000Z</updated>
<summary type="html"><![CDATA[<p>Accepted to ICME 2020(IEEE International Conference on Multimedia & Expo 2020) as an Oral Presentation.</p>
]]></summary>
<content type="html"><![CDATA[<p>Accepted to ICME 2020(IEEE International Conference on Multimedia & Expo 2020) as an Oral Presentation.</p>
<!-- more -->
<h2 id="title">Title</h2>
<p>Graph-Based Kinship Reasoning Network</p>
<h2 id="problem-description">Problem Description</h2>
<p>Giving two face images, determing whether these two people have kinship.</p>
<h2 id="core-idea">Core Idea</h2>
<ul>
<li>Construct a Kinship Reasoning Graph.</li>
</ul>
<h2 id="network-architecture">Network Architecture</h2>
<ol>
<li>ResNet-18 for extrcating image features.</li>
<li>GNN on a kinship reasoning graph.</li>
<li>MLP and Softmax for prediction.<br>
<img src="https://jiahuichen-github.github.io/post-images/1611657815523.PNG" alt="" loading="lazy"></li>
</ol>
<h2 id="implementstion-details">Implementstion Details</h2>
<ol>
<li>ResNet -18
<ul>
<li>Using sharing weights CNNs for feature extraction.</li>
<li>The two output vectors are feature representations on the same feature space.</li>
</ul>
<blockquote>
<p>Since we use the same CNN to extract features for two images, the values of two features in the same dimension represent the comparison of one kind of kinship related information encoded in that dimension.</p>
</blockquote>
</li>
<li>Kinship Reasoning Graph
<ul>
<li>Feature Nodes (peripheral nodes): the values on the same dimension are defined as a feature node.</li>
</ul>
<blockquote>
<p>We use one node in the kinship relational graph to denote the comparison of one feature dimension.</p>
</blockquote>
<ul>
<li>Super Node (central node): a central node created to connect feature nodes.</li>
</ul>
<blockquote>
<p>Therefore, we create a super node that is connected to all other nodes while all other nodes are only connected to the super node.</p>
</blockquote>
</li>
<li>GNN
<ul>
<li>Using the same parameter <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>W</mi><mrow><mi>m</mi><mi>e</mi><mi>s</mi><mi>s</mi></mrow></msub></mrow><annotation encoding="application/x-tex">W_{mess}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.13889em;">W</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">m</span><span class="mord mathdefault mtight">e</span><span class="mord mathdefault mtight">s</span><span class="mord mathdefault mtight">s</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> to transform node features int messages.<br>
<span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>m</mi><mi>k</mi></msup><mo>=</mo><mi>R</mi><mi>E</mi><mi>L</mi><mi>U</mi><mo>(</mo><msubsup><mi>W</mi><mrow><mi>m</mi><mi>e</mi><mi>s</mi><mi>s</mi></mrow><mi>T</mi></msubsup><msup><mi>h</mi><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><annotation encoding="application/x-tex">m^k = RELU(W_{mess}^T h^{k-1})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.849108em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault">m</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.849108em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.0991079999999998em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.00773em;">R</span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mord mathdefault">L</span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.13889em;">W</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-2.4530000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">m</span><span class="mord mathdefault mtight">e</span><span class="mord mathdefault mtight">s</span><span class="mord mathdefault mtight">s</span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.13889em;">T</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault">h</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></li>
<li>For each peripheral node <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>h</mi><mi>d</mi></msub></mrow><annotation encoding="application/x-tex">h_d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.84444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">d</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>,<br>
<span class="katex"><span class="katex-mathml"><math><semantics><mrow><msubsup><mi>h</mi><mi>d</mi><mi>k</mi></msubsup><mo>=</mo><mi>R</mi><mi>E</mi><mi>L</mi><mi>U</mi><mo>(</mo><msubsup><mi>W</mi><mrow><mi>p</mi><mi>e</mi><mi>r</mi><mi>i</mi></mrow><mi>T</mi></msubsup><mo>[</mo><msubsup><mi>m</mi><mi>d</mi><mi>k</mi></msubsup><mi mathvariant="normal">∣</mi><mi mathvariant="normal">∣</mi><msubsup><mi>m</mi><mi>c</mi><mi>k</mi></msubsup><mo>]</mo><mo>)</mo></mrow><annotation encoding="application/x-tex">h_d^{k}=RELU(W_{peri}^T [m_d^k || m_c^k])</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.132216em;vertical-align:-0.2831079999999999em;"></span><span class="mord"><span class="mord mathdefault">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.849108em;"><span style="top:-2.4168920000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">d</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2831079999999999em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.2438799999999999em;vertical-align:-0.394772em;"></span><span class="mord mathdefault" style="margin-right:0.00773em;">R</span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mord mathdefault">L</span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.13889em;">W</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-2.441336em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">p</span><span class="mord mathdefault mtight">e</span><span class="mord mathdefault mtight" style="margin-right:0.02778em;">r</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.13889em;">T</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.394772em;"><span></span></span></span></span></span></span><span class="mopen">[</span><span class="mord"><span class="mord mathdefault">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.849108em;"><span style="top:-2.4168920000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">d</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2831079999999999em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord">∣</span><span class="mord"><span class="mord mathdefault">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.849108em;"><span style="top:-2.4530000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">c</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mclose">]</span><span class="mclose">)</span></span></span></span></li>
<li>For central node<span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>h</mi><mi>c</mi></msub></mrow><annotation encoding="application/x-tex">h_c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.84444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>,<br>
<span class="katex"><span class="katex-mathml"><math><semantics><mrow><msubsup><mi>h</mi><mi>c</mi><mi>k</mi></msubsup><mo>=</mo><mi>R</mi><mi>E</mi><mi>L</mi><mi>U</mi><mo>(</mo><msub><mi>W</mi><mi>c</mi></msub><msup><mi>e</mi><mi>T</mi></msup><mo>[</mo><msubsup><mi>m</mi><mi>c</mi><mi>k</mi></msubsup><mi mathvariant="normal">∣</mi><mi mathvariant="normal">∣</mi><mi>A</mi><mi>G</mi><mi>G</mi><mo>(</mo><msubsup><mi>m</mi><mi>d</mi><mi>k</mi></msubsup><mo>)</mo><mo>]</mo><mo>)</mo></mrow><annotation encoding="application/x-tex">h_c^k=RELU(W_ce^T [m_c^k || AGG(m_d^k)])</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.096108em;vertical-align:-0.247em;"></span><span class="mord"><span class="mord mathdefault">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.849108em;"><span style="top:-2.4530000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">c</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.132216em;vertical-align:-0.2831079999999999em;"></span><span class="mord mathdefault" style="margin-right:0.00773em;">R</span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mord mathdefault">L</span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.13889em;">W</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mopen">[</span><span class="mord"><span class="mord mathdefault">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.849108em;"><span style="top:-2.4530000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">c</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord">∣</span><span class="mord mathdefault">A</span><span class="mord mathdefault">G</span><span class="mord mathdefault">G</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.849108em;"><span style="top:-2.4168920000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">d</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2831079999999999em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mclose">]</span><span class="mclose">)</span></span></span></span></li>
</ul>
</li>
<li>MLP
<ul>
<li><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>M</mi><mi>L</mi><mi>P</mi><mo>(</mo><mo>[</mo><msubsup><mi>h</mi><mi>c</mi><mi>K</mi></msubsup><mi mathvariant="normal">∣</mi><mi mathvariant="normal">∣</mi><msubsup><mi>h</mi><mn>1</mn><mi>K</mi></msubsup><mi mathvariant="normal">∣</mi><mi mathvariant="normal">∣</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">∣</mi><mi mathvariant="normal">∣</mi><msubsup><mi>h</mi><mi>d</mi><mi>K</mi></msubsup><mo>]</mo><mo>)</mo></mrow><annotation encoding="application/x-tex">MLP([h_c^K || h_1^K || ... ||h_d^K])</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1244389999999997em;vertical-align:-0.2831079999999999em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">M</span><span class="mord mathdefault">L</span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mopen">[</span><span class="mord"><span class="mord mathdefault">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-2.4530000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">c</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.07153em;">K</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord">∣</span><span class="mord"><span class="mord mathdefault">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-2.4518920000000004em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.07153em;">K</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.24810799999999997em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord">∣</span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mord">∣</span><span class="mord">∣</span><span class="mord"><span class="mord mathdefault">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-2.4168920000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">d</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.07153em;">K</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2831079999999999em;"><span></span></span></span></span></span></span><span class="mclose">]</span><span class="mclose">)</span></span></span></span></li>
</ul>
</li>
</ol>
<h2 id="data-flow">Data Flow</h2>
<ol>
<li>Feature Vectors <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mn>2</mn><mo>×</mo><mn>512</mn></mrow><annotation encoding="application/x-tex">2\times 512</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">5</span><span class="mord">1</span><span class="mord">2</span></span></span></span></li>
<li>Gaph Layer 0, feature Nodes <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mn>512</mn><mo>×</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">512\times 2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">5</span><span class="mord">1</span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">2</span></span></span></span>, super Node <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mn>1</mn><mo>×</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">1\times 2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">2</span></span></span></span>
<ul>
<li><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>W</mi><mrow><mi>m</mi><mi>e</mi><mi>s</mi><mi>s</mi></mrow></msub><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mrow><mn>2</mn><mo>×</mo><mn>512</mn></mrow></msup></mrow><annotation encoding="application/x-tex">W_{mess} \in \mathbb{R}^{2\times 512}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.13889em;">W</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">m</span><span class="mord mathdefault mtight">e</span><span class="mord mathdefault mtight">s</span><span class="mord mathdefault mtight">s</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbb">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mbin mtight">×</span><span class="mord mtight">5</span><span class="mord mtight">1</span><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></li>
<li><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>W</mi><mrow><mi>p</mi><mi>e</mi><mi>r</mi><mi>i</mi></mrow></msub><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mrow><mn>1024</mn><mo>×</mo><mn>512</mn></mrow></msup></mrow><annotation encoding="application/x-tex">W_{peri} \in \mathbb{R}^{1024\times 512}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.969438em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.13889em;">W</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">p</span><span class="mord mathdefault mtight">e</span><span class="mord mathdefault mtight" style="margin-right:0.02778em;">r</span><span class="mord mathdefault mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbb">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">0</span><span class="mord mtight">2</span><span class="mord mtight">4</span><span class="mbin mtight">×</span><span class="mord mtight">5</span><span class="mord mtight">1</span><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></li>
<li><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>W</mi><mrow><mi>c</mi><mi>e</mi><mi>n</mi></mrow></msub><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mrow><mn>1024</mn><mo>×</mo><mn>512</mn></mrow></msup></mrow><annotation encoding="application/x-tex">W_{cen} \in \mathbb{R}^{1024\times 512}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.13889em;">W</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">c</span><span class="mord mathdefault mtight">e</span><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbb">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">0</span><span class="mord mtight">2</span><span class="mord mtight">4</span><span class="mbin mtight">×</span><span class="mord mtight">5</span><span class="mord mtight">1</span><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></li>
</ul>
</li>
<li>Gaph Layer 1, feature Nodes <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mn>512</mn><mo>×</mo><mn>512</mn></mrow><annotation encoding="application/x-tex">512\times 512</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">5</span><span class="mord">1</span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">5</span><span class="mord">1</span><span class="mord">2</span></span></span></span>, super Node <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mn>1</mn><mo>×</mo><mn>512</mn></mrow><annotation encoding="application/x-tex">1\times 512</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">5</span><span class="mord">1</span><span class="mord">2</span></span></span></span></li>
<li>Gaph Layer 2, feature Nodes <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mn>512</mn><mo>×</mo><mn>4</mn></mrow><annotation encoding="application/x-tex">512\times 4</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">5</span><span class="mord">1</span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">4</span></span></span></span>, super Node $1\times 4</li>
<li>MLP & Softmax</li>
</ol>
<h2 id="thinking-points">Thinking Points</h2>
<ol>
<li>Graph-based solution.<br>
A novel graph-based solution for image problem.</li>
<li>Reasoning.</li>
</ol>
]]></content>
</entry>
<entry>
<title type="html"><![CDATA[Hello Gridea]]></title>
<id>https://jiahuichen-github.github.io/post/hello-gridea/</id>
<link href="https://jiahuichen-github.github.io/post/hello-gridea/">
</link>
<updated>2018-12-11T16:00:00.000Z</updated>
<summary type="html"><![CDATA[<p>👏 欢迎使用 <strong>Gridea</strong> !<br>
✍️ <strong>Gridea</strong> 一个静态博客写作客户端。你可以用它来记录你的生活、心情、知识、笔记、创意... ...</p>
]]></summary>
<content type="html"><![CDATA[<p>👏 欢迎使用 <strong>Gridea</strong> !<br>
✍️ <strong>Gridea</strong> 一个静态博客写作客户端。你可以用它来记录你的生活、心情、知识、笔记、创意... ...</p>
<!-- more -->
<p><a href="https://github.com/getgridea/gridea">Github</a><br>
<a href="https://gridea.dev/">Gridea 主页</a><br>
<a href="http://fehey.com/">示例网站</a></p>
<h2 id="特性">特性👇</h2>
<p>📝 你可以使用最酷的 <strong>Markdown</strong> 语法,进行快速创作</p>
<p>🌉 你可以给文章配上精美的封面图和在文章任意位置插入图片</p>
<p>🏷️ 你可以对文章进行标签分组</p>
<p>📋 你可以自定义菜单,甚至可以创建外部链接菜单</p>
<p>💻 你可以在 <strong>Windows</strong>,<strong>MacOS</strong> 或 <strong>Linux</strong> 设备上使用此客户端</p>
<p>🌎 你可以使用 <strong>𝖦𝗂𝗍𝗁𝗎𝖻 𝖯𝖺𝗀𝖾𝗌</strong> 或 <strong>Coding Pages</strong> 向世界展示,未来将支持更多平台</p>
<p>💬 你可以进行简单的配置,接入 <a href="https://github.com/gitalk/gitalk">Gitalk</a> 或 <a href="https://github.com/SukkaW/DisqusJS">DisqusJS</a> 评论系统</p>
<p>🇬🇧 你可以使用<strong>中文简体</strong>或<strong>英语</strong></p>
<p>🌁 你可以任意使用应用内默认主题或任意第三方主题,强大的主题自定义能力</p>
<p>🖥 你可以自定义源文件夹,利用 OneDrive、百度网盘、iCloud、Dropbox 等进行多设备同步</p>
<p>🌱 当然 <strong>Gridea</strong> 还很年轻,有很多不足,但请相信,它会不停向前 🏃</p>
<p>未来,它一定会成为你离不开的伙伴</p>
<p>尽情发挥你的才华吧!</p>
<p>😘 Enjoy~</p>
]]></content>
</entry>
</feed>