-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcollect-deepseek-predictor-data.py
401 lines (329 loc) · 15.2 KB
/
collect-deepseek-predictor-data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import os.path
import random
from typing import Tuple, Optional
import torch
from datasets import load_dataset
from fire import Fire
from tqdm import tqdm
from transformers import AutoTokenizer
from transformers.models.mixtral.modeling_mixtral import MixtralForCausalLM, MixtralSparseMoeBlock, MixtralDecoderLayer
from transformers import AutoModelForCausalLM
def get_Pile_dataset(tokenizer, seqlen: int, nsamples: int, split: str = "train"):
# custom_cache_dir = '/home/LeiFeng/xiaolong/moe_quantize/data/minipile/'
data = load_dataset('mit-han-lab/pile-val-backup')['validation']
text = "".join([" \n" if s == "" else s for s in data["text"][:1000]])
enc = tokenizer(text, return_tensors="pt")
dataset = []
for _ in range(nsamples):
i = random.randint(0, enc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = enc.input_ids[:, i:j]
attention_mask = torch.ones_like(inp)
dataset.append({"input_ids": inp, "attention_mask": attention_mask})
return dataset
@torch.no_grad()
def collect_deepseek_ffn_predictor_train_data(
seq_len=4096,
num_samples=400,
save_dir="data/deepseek/ffn_input_output_pairs"
):
model = AutoModelForCausalLM.from_pretrained(
'deepseek-ai/deepseek-moe-16b-base', device_map="auto", torch_dtype=torch.float16, trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained('deepseek-ai/deepseek-moe-16b-base')
def _custom_ffn_forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
input_token = hidden_states.detach().clone().cpu()
original_output = self._original_forward(hidden_states)
output_token = original_output[0].detach().clone().cpu()
with torch.no_grad():
block_ffn_input_output_pair[self._module_name].append((input_token, output_token))
return original_output
block_ffn_input_output_pair = {}
for name, module in model.named_modules():
if type(module).__name__ == 'DeepseekMoE':
block_ffn_input_output_pair[name] = []
module._original_forward = module.forward
module._module_name = name
module.forward = _custom_ffn_forward.__get__(module, type(module))
model.eval()
dataset = get_Pile_dataset(tokenizer=tokenizer, seqlen=seq_len, nsamples=num_samples, split="train")
for i, data in enumerate(tqdm(dataset)):
with torch.no_grad():
data = {key: value.to(model.device) for key, value in data.items()}
model(**data)
if not os.path.isdir(save_dir):
os.makedirs(save_dir, exist_ok=True)
for key, pairs in block_ffn_input_output_pair.items():
torch.save(pairs, f"{save_dir}/{key}.pt")
print(f"Saved at {save_dir}/{key}.pt")
@torch.no_grad()
def collect_deepseek_predictor_test_data(
seq_len=4096,
num_samples=128,
save_dir="data/deepseek/ffn_input_output_pairs/testset",
dataset_name: str = "wikitext"
):
model = AutoModelForCausalLM.from_pretrained(
'deepseek-ai/deepseek-moe-16b-base', device_map="auto", torch_dtype=torch.float16, trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained('deepseek-ai/deepseek-moe-16b-base')
def _custom_ffn_forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
input_token = hidden_states.detach().clone().cpu()
original_output = self._original_forward(hidden_states)
output_token = original_output[0].detach().clone().cpu()
with torch.no_grad():
block_ffn_input_output_pair[self._module_name].append((input_token, output_token))
return original_output
block_ffn_input_output_pair = {}
for name, module in model.named_modules():
if type(module).__name__ == 'DeepseekMoE':
block_ffn_input_output_pair[name] = []
module._original_forward = module.forward
module._module_name = name
module.forward = _custom_ffn_forward.__get__(module, type(module))
model.eval()
dataset = get_Pile_dataset(tokenizer=tokenizer, seqlen=seq_len, nsamples=num_samples, split="train")
for i, data in enumerate(tqdm(dataset)):
with torch.no_grad():
data = {key: value.to(model.device) for key, value in data.items()}
model(**data)
if not os.path.isdir(save_dir):
os.makedirs(save_dir, exist_ok=True)
for key, pairs in block_ffn_input_output_pair.items():
torch.save(pairs, f"{save_dir}/{key}.pt")
print(f"Saved at {save_dir}/{key}.pt")
@torch.no_grad()
def collect_deepseek_ffn_with_residual_predictor_train_data(
seq_len=1024,
num_samples=400,
save_dir="data/deepseek/ffn_input_output_pairs_with_residual/"
):
model = AutoModelForCausalLM.from_pretrained(
'deepseek-ai/deepseek-moe-16b-base', device_map="auto", torch_dtype=torch.float16, trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained('deepseek-ai/deepseek-moe-16b-base')
def _custom_decoder_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
**kwargs
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual.to(hidden_states.device) + hidden_states
# Fully Connected
input_token = hidden_states.detach().clone().cpu() # added
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states, router_logits = self.block_sparse_moe(hidden_states)
hidden_states = residual + hidden_states
output_token = hidden_states.detach().clone().cpu() # added
with torch.no_grad():
block_ffn_input_output_pair[self._module_name].append((input_token, output_token)) # added
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
if output_router_logits:
outputs += (router_logits,)
return outputs
block_ffn_input_output_pair = {}
for name, module in model.named_modules():
if type(module).__name__ == 'DeepseekDecoderLayer':
block_ffn_input_output_pair[name] = []
module._module_name = name
module.forward = _custom_decoder_forward.__get__(module, type(module))
model.eval()
dataset = get_Pile_dataset(tokenizer=tokenizer, seqlen=seq_len, nsamples=num_samples, split="train")
for i, data in enumerate(tqdm(dataset)):
with torch.no_grad():
model(**data)
if not os.path.isdir(save_dir):
os.makedirs(save_dir, exist_ok=True)
for key, pairs in block_ffn_input_output_pair.items():
torch.save(pairs, f"{save_dir}/{key}.pt")
print(f"Saved at {save_dir}/{key}.pt")
@torch.no_grad()
def collect_deepseek_ffn_with_residual_predictor_test_data(
seq_len=4096,
num_samples=128,
save_dir="data/deepseek/ffn_input_output_pairs_with_residual/testset"
):
model = AutoModelForCausalLM.from_pretrained(
'deepseek-ai/deepseek-moe-16b-base', device_map="auto", torch_dtype=torch.float16, trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained('deepseek-ai/deepseek-moe-16b-base')
def _custom_decoder_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
**kwargs
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual.to(hidden_states.device) + hidden_states
# Fully Connected
input_token = hidden_states.detach().clone().cpu() # added
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states, router_logits = self.block_sparse_moe(hidden_states)
hidden_states = residual + hidden_states
output_token = hidden_states.detach().clone().cpu() # added
with torch.no_grad():
block_ffn_input_output_pair[self._module_name].append((input_token, output_token)) # added
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
if output_router_logits:
outputs += (router_logits,)
return outputs
block_ffn_input_output_pair = {}
for name, module in model.named_modules():
if type(module).__name__ == 'DeepseekDecoderLayer':
block_ffn_input_output_pair[name] = []
module._module_name = name
module.forward = _custom_decoder_forward.__get__(module, type(module))
model.eval()
dataset = get_Pile_dataset(tokenizer=tokenizer, seqlen=seq_len, nsamples=num_samples, split="train")
for i, data in enumerate(tqdm(dataset)):
with torch.no_grad():
model(**data)
if not os.path.isdir(save_dir):
os.makedirs(save_dir, exist_ok=True)
for key, pairs in block_ffn_input_output_pair.items():
torch.save(pairs, f"{save_dir}/{key}.pt")
print(f"Saved at {save_dir}/{key}.pt")
@torch.no_grad()
def collect_deepseek_ffn_mse_loss(
seq_len=4096,
num_samples=128,
save_dir="results/deepseek/ffn_mse_loss"
):
model = AutoModelForCausalLM.from_pretrained(
'deepseek-ai/deepseek-moe-16b-base', device_map="auto", torch_dtype=torch.float16, trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained('deepseek-ai/deepseek-moe-16b-base')
# def _custom_decoder_forward(
# self,
# hidden_states: torch.Tensor,
# attention_mask: Optional[torch.Tensor] = None,
# position_ids: Optional[torch.LongTensor] = None,
# past_key_value: Optional[Tuple[torch.Tensor]] = None,
# output_attentions: Optional[bool] = False,
# output_router_logits: Optional[bool] = False,
# use_cache: Optional[bool] = False,
# **kwargs
# ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
# residual = hidden_states
#
# hidden_states = self.input_layernorm(hidden_states)
#
# # Self Attention
# hidden_states, self_attn_weights, present_key_value = self.self_attn(
# hidden_states=hidden_states,
# attention_mask=attention_mask,
# position_ids=position_ids,
# past_key_value=past_key_value,
# output_attentions=output_attentions,
# use_cache=use_cache,
# )
# hidden_states = residual.to(hidden_states.device) + hidden_states
#
# # Fully Connected
# input_token = hidden_states.detach().clone().cpu() # added
# residual = hidden_states
# hidden_states = self.post_attention_layernorm(hidden_states)
# hidden_states, router_logits = self.block_sparse_moe(hidden_states)
# hidden_states = residual + hidden_states
# output_token = hidden_states.detach().clone().cpu() # added
# with torch.no_grad():
# block_ffn_input_output_pair[self._module_name].append(
# torch.nn.functional.mse_loss(input_token.float(), output_token.float(), reduction="mean").item()
# ) # added
#
# outputs = (hidden_states,)
#
# if output_attentions:
# outputs += (self_attn_weights,)
#
# if use_cache:
# outputs += (present_key_value,)
#
# if output_router_logits:
# outputs += (router_logits,)
#
# return outputs
def _custom_ffn_forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
input_token = hidden_states.detach().clone().cpu()
original_output = self._original_forward(hidden_states)
output_token = original_output[0].detach().clone().cpu()
with torch.no_grad():
block_ffn_input_output_pair[self._module_name].append(
torch.nn.functional.mse_loss(input_token.float(), output_token.float(), reduction="mean").item()
)
return original_output
block_ffn_input_output_pair = {}
for name, module in model.named_modules():
if type(module).__name__ == 'DeepseekMoE':
print(f"Adding {name} to block_ffn_input_output_pair")
block_ffn_input_output_pair[name] = []
module._original_forward = module.forward
module._module_name = name
module.forward = _custom_ffn_forward.__get__(module, type(module))
model.eval()
dataset = get_Pile_dataset(tokenizer=tokenizer, seqlen=seq_len, nsamples=num_samples, split="train")
for i, data in enumerate(tqdm(dataset)):
with torch.no_grad():
model(**data)
if not os.path.isdir(save_dir):
os.makedirs(save_dir, exist_ok=True)
block_ffn_input_output_pair = {
key: torch.tensor(value).mean().item()
for key, value in block_ffn_input_output_pair.items()
}
print(block_ffn_input_output_pair)
print(list(block_ffn_input_output_pair.values()))
def main(function_name = None):
if function_name is None:
raise ValueError("Please specify a function name to run.")
elif function_name == 'collect_deepseek_ffn_predictor_train_data':
collect_deepseek_ffn_predictor_train_data()
elif function_name == 'collect_deepseek_predictor_test_data':
collect_deepseek_predictor_test_data()
elif function_name == 'collect_deepseek_ffn_with_residual_predictor_train_data':
collect_deepseek_ffn_with_residual_predictor_train_data()
elif function_name == 'collect_deepseek_ffn_with_residual_predictor_test_data':
collect_deepseek_ffn_with_residual_predictor_test_data()
if __name__ == "__main__":
Fire(collect_deepseek_ffn_mse_loss)