-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_sdd.py
310 lines (246 loc) · 9.41 KB
/
train_sdd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import sys
from torch.utils.data import DataLoader
import argparse
from social_utils import *
import yaml
from model_sdd import Goal_example_model
import numpy as np
import pdb
from gmm2d import *
from metrics import *
from utils import *
parser = argparse.ArgumentParser(description="GoalExample")
parser.add_argument("--num_workers", "-nw", type=int, default=0)
parser.add_argument("--gpu_index", "-gi", type=int, default=0)
parser.add_argument("--config_filename", "-cfn", type=str, default="optimal.yaml")
parser.add_argument("--save_file", "-sf", type=str, default="PECNET_social_model.pt")
parser.add_argument("--verbose", "-v", action="store_true")
parser.add_argument("--lr", type=float, default=0.0003, help="learning rate")
parser.add_argument("--input_feat", type=int, default=2, help="learning rate")
parser.add_argument("--output_feat", type=int, default=128, help="learning rate")
parser.add_argument(
"--checkpoint", type=str, default="./checkpoint_sdd_abs2", help="learning rate"
)
args = parser.parse_args()
args.checkpoint = "./sdd_wo_goal"
dtype = torch.float64
torch.set_default_dtype(dtype)
device = (
torch.device("cuda", index=args.gpu_index)
if torch.cuda.is_available()
else torch.device("cpu")
)
if torch.cuda.is_available():
torch.cuda.set_device(args.gpu_index)
print(device)
def batch_bivariate_loss_ssd(V_pred, V_trgt):
"""
V_pred, V_trgt:
[Batch, Seq_len, Nodes, 5/2];
"""
# mux, muy, sx, sy, corr
# assert V_pred.shape == V_trgt.shape
normx = V_trgt[..., 0] - V_pred[..., 0]
normy = V_trgt[..., 1] - V_pred[..., 1]
sx = torch.exp(V_pred[..., 2]) # sx
sy = torch.exp(V_pred[..., 3]) # sy
corr = torch.tanh(V_pred[..., 4]) # corr
sxsy = sx * sy
z = (normx / sx) ** 2 + (normy / sy) ** 2 - 2 * ((corr * normx * normy) / sxsy)
negRho = 1 - corr ** 2
# Numerator
result = torch.exp(-z / (2 * negRho))
# Normalization factor
denom = 2 * np.pi * (sxsy * torch.sqrt(negRho))
# Final PDF calculation
result = result / denom
# Numerical stability
epsilon = 1e-20
result = -torch.log(torch.clamp(result, min=epsilon))
return result.mean()
def graph_loss(V_pred, V_target):
return batch_bivariate_loss_ssd(V_pred, V_target)
with open("./config/" + args.config_filename, "r") as file:
try:
hyper_params = yaml.load(file, Loader=yaml.FullLoader)
except:
hyper_params = yaml.load(file)
file.close()
print(hyper_params)
train_dataset = SocialDataset(
set_name="train",
b_size=hyper_params["train_b_size"],
t_tresh=hyper_params["time_thresh"],
d_tresh=hyper_params["dist_thresh"],
verbose=args.verbose,
)
test_dataset = SocialDataset(
set_name="test",
b_size=hyper_params["test_b_size"],
t_tresh=hyper_params["time_thresh"],
d_tresh=hyper_params["dist_thresh"],
verbose=args.verbose,
)
model = Goal_example_model(
input_feat=args.input_feat,
output_feat=args.output_feat,
config=hyper_params,
non_local_loop=0,
).cuda()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
"""Prepare some data for this batch of data"""
# shift origin and scale data
for traj in train_dataset.trajectory_batches:
traj -= traj[:, :1, :]
traj *= 0.2
for traj in test_dataset.trajectory_batches:
traj -= traj[:, :1, :]
traj *= 0.2
def test(test_dataset, best_of_n=20):
global model, optim
model.eval()
ade_bigls = []
fde_bigls = []
for i, (traj, mask, initial_pos) in enumerate(
zip(
test_dataset.trajectory_batches,
test_dataset.mask_batches,
test_dataset.initial_pos_batches,
)
):
traj_v = np.gradient(np.transpose(traj, (0, 2, 1)), 0.4, axis=-1)
traj_a = np.gradient(traj_v, 0.4, axis=-1)
traj_v = torch.from_numpy(traj_v).permute(0, 2, 1)
traj_a = torch.from_numpy(traj_a).permute(0, 2, 1)
traj, mask, initial_pos, traj_a, traj_v = (
torch.DoubleTensor(traj).to(device),
torch.DoubleTensor(mask).to(device),
torch.DoubleTensor(initial_pos).to(device),
torch.DoubleTensor(traj_a).to(device),
torch.DoubleTensor(traj_v).to(device),
)
"""Pre-process data into relative coords"""
# input_traj = traj[:, : hyper_params["past_length"], :]
dest = traj[:, -1].unsqueeze(1).repeat(1, 8, 1)
# dest = 0.0
# dest = torch.mean(traj, 1).unsqueeze(1).repeat(1, 8, 1)
# input_traj = torch.cat(
# [
# traj[:, : hyper_params["past_length"]] - (dest / 3.0),
# traj_v[:, : hyper_params["past_length"]],
# traj_a[:, : hyper_params["past_length"]],
# ],
# -1,
# )
# input_traj = traj[:, : hyper_params["past_length"]] - (dest / 2.0)
input_traj = traj[:, : hyper_params["past_length"]] - (dest)
# input_traj = traj[:, : hyper_params["past_length"]] - dest
# input_traj = torch.cat([traj[:, : hyper_params["past_length"]], dest[:, :1]], 1)
init_traj = traj[
:, hyper_params["past_length"] - 1 : hyper_params["past_length"], :
]
V_tr = traj[:, hyper_params["past_length"] :, :]
V_pred, _ = model(input_traj, mask)
V_pred = V_pred.squeeze()
log_pis = torch.ones(V_pred[..., -2:-1].shape)
gmm2d = GMM2D(
log_pis,
V_pred[..., 0:2],
V_pred[..., 2:4],
Func.tanh(V_pred[..., -1]).unsqueeze(-1),
)
ade_ls = {}
fde_ls = {}
for n in range(traj.shape[0]):
ade_ls[n] = []
fde_ls[n] = []
for k in range(best_of_n):
V_pred = gmm2d.rsample().squeeze()
"""Evaluate rel output
Comment out for evaluating abs output
"""
# V_pred = torch.cumsum(V_pred, dim=1) + init_traj.repeat(1, 12, 1)
for n in range(traj.shape[0]):
ade_ls[n].append(torch.norm(V_pred[n] - V_tr[n], dim=-1).mean())
fde_ls[n].append(torch.norm(V_pred[n, -1] - V_tr[n, -1]))
# Metrics
for n in range(traj.shape[0]):
ade_bigls.append(min(ade_ls[n]))
fde_bigls.append(min(fde_ls[n]))
ade_ = sum(ade_bigls) / len(ade_bigls)
fde_ = sum(fde_bigls) / len(fde_bigls)
return ade_, fde_
def train(train_dataset, epoch):
global model, optim
model.train()
for i, (traj, mask, initial_pos) in enumerate(
zip(
train_dataset.trajectory_batches,
train_dataset.mask_batches,
train_dataset.initial_pos_batches,
)
):
optimizer.zero_grad()
traj_v = np.gradient(np.transpose(traj, (0, 2, 1)), 0.4, axis=-1)
traj_a = np.gradient(traj_v, 0.4, axis=-1)
traj_v = torch.from_numpy(traj_v).permute(0, 2, 1)
traj_a = torch.from_numpy(traj_a).permute(0, 2, 1)
traj, mask, initial_pos, traj_v, traj_a = (
torch.DoubleTensor(traj).to(device),
torch.DoubleTensor(mask).to(device),
torch.DoubleTensor(initial_pos).to(device),
torch.DoubleTensor(traj_v).to(device),
torch.DoubleTensor(traj_a).to(device),
)
"""Pre-process data into relative coords"""
# rel_traj = traj[:, 1:] - traj[:, :-1]
# V_tr = rel_traj[:, -12:]
V_tr = traj[:, hyper_params["past_length"] :]
dest = traj[:, -1].unsqueeze(1).repeat(1, 8, 1)
# dest = 0.0
# dest = torch.mean(traj, 1).unsqueeze(1).repeat(1, 8, 1)
# input_traj = torch.cat(
# [
# traj[:, : hyper_params["past_length"]] - (dest / 3.0),
# traj_a[:, : hyper_params["past_length"]],
# traj_v[:, : hyper_params["past_length"]],
# ],
# -1,
# )
# input_traj = traj[:, : hyper_params["past_length"]] - (dest / 2.0)
input_traj = traj[:, : hyper_params["past_length"]] - (dest)
# input_traj = traj[:, : hyper_params["past_length"]] - dest
# input_traj = torch.cat([traj[:, : hyper_params["past_length"]], dest[:, :1]], 1)
V_pred, _ = model(input_traj, mask)
V_pred = V_pred.squeeze()
loss = graph_loss(V_pred, V_tr)
loss.backward()
optimizer.step()
# Metrics
loss_batch = loss.item()
print("TRAIN:", "\t Epoch:", epoch, "\t Loss:", loss_batch)
for epoch in range(450):
train(train_dataset, epoch)
if epoch > 20:
ade_ = 99999
fde_ = 99999
ad, fd = test(test_dataset, 20)
ade_new = min(ade_, ad)
fde_new = min(fde_, fd)
if ade_new < ade_ and fde_new < fde_:
ade_ = ade_new
fde_ = fde_new
torch.save(
model.state_dict(),
os.path.join(
args.checkpoint,
"val_best_{}_{}_{}.pth".format(
epoch, ade_.item() * 5.0, fde_.item() * 5.0
),
),
)
print("ADE:", ade_.item() * 5.0, " FDE:", fde_.item() * 5.0)