-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathnway.py
643 lines (529 loc) · 26 KB
/
nway.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function, division
__doc__ = """Multiway association between astrometric catalogue. Use --help for usage.
Example: nway.py --radius 10 --prior-completeness 0.95 --mag GOODS:mag_H auto --mag IRAC:mag_irac1 auto cdfs4Ms_srclist_v3.fits :Pos_error CANDELS_irac1.fits 0.5 gs_short.fits 0.1 --out=out.fits
"""
import sys
import numpy
from numpy import log10, pi, exp
import astropy.io.fits as pyfits
import argparse
import tqdm
import nwaylib.progress as progress
import nwaylib.logger as logger
import nwaylib.fastskymatch as match
import nwaylib.bayesdistance as bayesdist
import nwaylib.magnitudeweights as magnitudeweights
def make_errors_table_matrix(table_names, pos_errors):
symmetric = True
rotated = False
errors = []
for ti, (table_name, pos_error) in enumerate(zip(table_names, pos_errors)):
colnames = tables[ti].dtype.names
if pos_error[0] != ':':
print(' Position error for "%s": using fixed value %f' % (table_name, float(pos_error)))
pos_error = float(pos_error)
if pos_error > match_radius * 60 * 60:
print('WARNING: Given separation error for "%s" is larger than the match radius! Increase --radius to >> %s' % (table_name, pos_error))
pos_error = float(pos_error) * numpy.ones(len(table))
errors.append((pos_error, pos_error, numpy.zeros_like(pos_error)))
continue
keys = pos_error[1:].split(':')
if len(keys) > 3:
assert False, 'Invalid column specifier: %s' % pos_error
meanings = ['ra_error', 'dec_error', 'ell_angle']
for k, meaning in zip(keys, meanings):
k2 = "%s_%s" % (table_name, k)
# get column
assert k2 in table.dtype.names, 'ERROR: Position error column "%s" not in table "%s". Have these columns: %s' % (k2, table_name, ', '.join(colnames))
print(' Position error for "%s": found column %s (for %s): Values are [%f..%f]' % (
table_name, k, meaning, tables[ti][k].min(), tables[ti][k].max()))
if len(keys) == 3:
keys = keys[0], keys[1], keys[2]
rotated = True
intable_errors_ra = tables[ti][keys[0]]
intable_errors_dec = tables[ti][keys[1]]
intable_errors_rho = (tables[ti][keys[2]] - 90) / 180 * pi
table_errors_ra = table["%s_%s" % (table_name, keys[0])]
table_errors_dec = table["%s_%s" % (table_name, keys[1])]
table_errors_rho = (table["%s_%s" % (table_name, keys[2])] - 90) / 180 * pi
intable_errors_ra, intable_errors_dec, intable_errors_rho = bayesdist.convert_from_ellipse(intable_errors_ra, intable_errors_dec, intable_errors_rho)
table_errors_ra, table_errors_dec, table_errors_rho = bayesdist.convert_from_ellipse(table_errors_ra, table_errors_dec, table_errors_rho)
elif len(keys) == 2:
keys = keys[0], keys[1]
symmetric = False
intable_errors_ra = tables[ti][keys[0]]
intable_errors_dec = tables[ti][keys[1]]
intable_errors_rho = numpy.zeros_like(intable_errors_ra)
table_errors_ra = table["%s_%s" % (table_name, keys[0])]
table_errors_dec = table["%s_%s" % (table_name, keys[1])]
table_errors_rho = numpy.zeros_like(table_errors_ra)
elif len(keys) == 1:
keys = keys[0], keys[0]
intable_errors_ra = tables[ti][keys[0]]
intable_errors_dec = intable_errors_ra
intable_errors_rho = numpy.zeros_like(intable_errors_ra)
table_errors_ra = table["%s_%s" % (table_name, keys[0])]
table_errors_dec = table_errors_ra
table_errors_rho = numpy.zeros_like(table_errors_ra)
if intable_errors_ra.min() <= 0 or intable_errors_dec.min() <= 0:
print('WARNING: Some separation errors in "%s" are 0! This will give invalid results (%d rows).' % (
keys[0], numpy.logical_and(intable_errors_ra <= 0, intable_errors_dec <= 0).sum()))
if intable_errors_ra.max() > match_radius * 60 * 60 or intable_errors_dec.max() > match_radius * 60 * 60:
print('WARNING: Some separation errors in "%s" are larger than the match radius! Increase --radius to >> %s' % (keys[0], max(intable_errors_ra.max(), intable_errors_dec.max())))
errors.append((table_errors_ra, table_errors_dec, table_errors_rho))
return errors, (not rotated) and symmetric
# set up program arguments
class HelpfulParser(argparse.ArgumentParser):
def error(self, message):
sys.stderr.write('error: %s\n' % message)
self.print_help()
sys.exit(2)
parser = HelpfulParser(description=__doc__,
epilog="""Johannes Buchner (C) 2013-2017 <[email protected]>""",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--radius', type=float, required=True,
help='exclusive search radius in arcsec for initial matching')
parser.add_argument('--mag-radius', default=None, type=float,
help='search radius for building the magnitude histogram of target sources. If not set, the Bayesian posterior is used.')
parser.add_argument('--mag-auto-minprob', default=0.9, type=float,
help='minimum posterior probability (default: 0.9) for the magnitude histogram of secure target sources. Used in the Bayesian procedure.''')
parser.add_argument('--mag-exclude-radius', default=None, type=float,
help='exclusion radius for building the magnitude histogram of field sources. If not set, --mag-radius is used.')
parser.add_argument('--prior-completeness', metavar='COMPLETENESS', default="1", type=str,
help='expected matching completeness of sources (prior)')
parser.add_argument('--ignore-unrelated-associations', dest='consider_unrelated_associations', action='store_false',
help='Ignore in the calculation source pairings unrelated to the primary source (not recommended)')
parser.set_defaults(consider_unrelated_associations=True)
parser.add_argument('--mag', metavar='MAGCOLUMN+MAGFILE', type=str, nargs=2, action='append', default=[],
help="""name of <table>:<column> for magnitude biasing, and filename for magnitude histogram
(use auto for auto-computation within mag-radius).
Example: --mag GOODS:mag_H auto --mag IRAC:mag_irac1 irac_histogram.txt""")
parser.add_argument('--acceptable-prob', metavar='PROB', type=float, default=0.5,
help='ratio limit up to which secondary solutions are flagged')
parser.add_argument('--min-prob', type=float, default=0,
help='lowest probability allowed in final catalogue. If 0, no trimming is performed (default).')
parser.add_argument('--out', metavar='OUTFILE', help='output file name', required=True)
parser.add_argument('catalogues', type=str, nargs='+',
help="""input catalogue fits files and position errors.
Example: cdfs4Ms_srclist_v3.fits :Pos_error CANDELS_irac1.fits 0.5 gs_short.fits 0.1
""")
parser.add_argument('--prefilter-pair', metavar='CATNAME1 CATNAME2 radius', type=str, nargs=3, action='append', default=[],
help="""name of two <table>s where combinations more distant than radius (in arcsec)
should not considered. This reduces the memory needs when several large catalogs
with high accuracy are matched against some with low accuracy (high --radius).
Example: --prefilter-pair GOODS IRAC 0.1""")
# parsing arguments
args = parser.parse_args()
print('NWAY arguments:')
diff_secondary = args.acceptable_prob
outfile = args.out
filenames = args.catalogues[::2]
print(' catalogues: ', ', '.join(filenames))
pos_errors = args.catalogues[1::2]
print(' position errors/columns: ', ', '.join(pos_errors))
fits_tables = []
table_names = []
tables = []
source_densities = []
source_densities_plus = []
fits_formats = []
for fitsname in filenames:
fits_table = pyfits.open(fitsname)[1]
fits_tables.append(fits_table)
table_name = fits_table.name
table_names.append(table_name)
table = fits_table.data
fits_formats.append([c.format for c in fits_table.columns])
tables.append(table)
n = len(table)
assert 'SKYAREA' in fits_table.header, 'file "%s", table "%s" does not have a field "SKYAREA", which should contain the area of the catalogue in square degrees' % (fitsname, table_name)
area = fits_table.header['SKYAREA'] * 1.0 # in square degrees
area_total = (4 * pi * (180 / pi)**2)
density = n / area * area_total
print(' from catalogue "%s" (%d), density gives %.2e on entire sky' % (table_name, n, density))
# this takes into account that the source may be absent
density_plus = (n + 1) / area * area_total
source_densities.append(density)
source_densities_plus.append(density_plus)
# source can not be absent in primary catalogue
source_densities_plus[0] = source_densities[0]
source_densities_plus = numpy.array(source_densities_plus)
if ':' in args.prior_completeness:
prior_completeness = numpy.array([1.0] + [float(pc) for pc in args.prior_completeness.split(':')])
if len(prior_completeness) != len(filenames):
raise Exception('Prior completeness needs one value per catalog, like "%s". Received "%s".' % (':'.join(["0.9"] * (len(filenames) - 1)), args.prior_completeness))
else:
prior_completeness = numpy.array([1.0] + [float(args.prior_completeness)**(1./(len(filenames)-1)) for i in range(1, len(filenames))])
min_prob = args.min_prob
match_radius = args.radius / 60. / 60 # in degrees
pairwise_errs = [(table_names.index(tablea), table_names.index(tableb), float(err))
for tablea, tableb, err in args.prefilter_pair]
if len(pairwise_errs) > 0:
print(' pair-wise pre-filtering on')
#if args.mag_radius is not None:
# mag_radius = match_radius # in arc sec
#else:
mag_include_radius = args.mag_radius # in arc sec
mag_exclude_radius = args.mag_exclude_radius # in arc sec
if mag_exclude_radius is None:
mag_exclude_radius = mag_include_radius
magauto_post_single_minvalue = args.mag_auto_minprob
assert 0 < magauto_post_single_minvalue <= 1, 'probability should be between 0 and 1'
magnitude_columns = args.mag
print(' magnitude columns: ', ', '.join([c for c, _ in magnitude_columns]))
for mag, magfile in magnitude_columns:
table_name, col_name = mag.split(':', 1)
assert table_name in table_names, 'table name specified for magnitude ("%s") unknown. Known tables: %s' % (table_name, ', '.join(table_names))
ti = table_names.index(table_name)
col_names = tables[ti].dtype.names
assert col_name in col_names, 'column name specified for magnitude ("%s") unknown. Known columns in table "%s": %s' % (mag, table_name, ', '.join(col_names))
simple_errors = True
for ti, (table_name, pos_error) in enumerate(zip(table_names, pos_errors)):
colnames = tables[ti].dtype.names
if pos_error[0] != ':':
continue
keys = pos_error[1:].split(':')
if len(keys) > 3:
assert False, 'Invalid column specifier: %s' % pos_error
if len(keys) > 1:
simple_errors = False
meanings = [
[],
['symmerror'],
['ra_error', 'dec_error'],
['majaxis', 'minaxis', 'ell_angle'],
][len(keys)]
for k, meaning in zip(keys, meanings):
# get column
assert k in colnames, 'ERROR: Position error column "%s" not in table "%s". Have these columns: %s' % (k, table_name, ', '.join(colnames))
# first match input catalogues, compute possible combinations in match_radius
results, columns, match_header = match.match_multiple(tables, table_names, match_radius, fits_formats, circular=simple_errors,
logger=logger.NormalLogger(), pairwise_errs=pairwise_errs)
table = match.fits_from_columns(pyfits.ColDefs(columns)).data
assert len(table) > 0, 'No matches.'
# first pass: find secure matches and secure non-matches
print('Computing distance-based probabilities ...')
print(' finding position error columns ...')
# get the separation and error columns for the bayesian weighting
errors, simple_errors = make_errors_table_matrix(table_names, pos_errors)
if simple_errors:
errors = [e_ra for e_ra, e_dec, e_rho in errors]
print(' finding position columns ...')
# table is in arcsec, and therefore separations is in arcsec
def make_separation_table_matrix(kstr, table, table_names):
separations = []
for ti, a in enumerate(table_names):
row = []
for tj, b in enumerate(table_names):
if ti < tj:
k = kstr % (b, a)
assert k in table.dtype.names, 'ERROR: Separation column for "%s" not in merged table. Have columns: %s' % (k, ', '.join(table.dtype.names))
row.append(table[k])
else:
row.append(numpy.ones(len(table)) * numpy.nan)
separations.append(row)
return separations
separations = make_separation_table_matrix('Separation_%s_%s', table, table_names)
if not simple_errors:
separations_ra = make_separation_table_matrix('Separation_%s_%s_ra', table, table_names)
separations_dec = make_separation_table_matrix('Separation_%s_%s_dec', table, table_names)
print(' building primary_id index ...')
primary_id_key = match.get_tablekeys(tables[0], 'ID', tablename=table_names[0])
assert len(numpy.unique(tables[0][primary_id_key])) == len(tables[0][primary_id_key]), "ERROR: ID column '%s' in primary catalog contains duplicates." % primary_id_key
primary_id_key = '%s_%s' % (table_names[0], primary_id_key)
primary_ids = []
primary_id_start = []
last_primary_id = None
primary_id_column = table[primary_id_key]
for i, pid in enumerate(primary_id_column):
if pid != last_primary_id:
last_primary_id = pid
primary_ids.append(pid)
primary_id_start.append(i)
primary_id_end = primary_id_start[1:] + [len(primary_id_column)]
# compute n-way position evidence
print(' computing probabilities ...')
log_bf = numpy.zeros(len(table)) * numpy.nan
prior = numpy.zeros(len(table)) * numpy.nan
# handle all cases (also those with missing counterparts in some catalogues)
for case in range(2**(len(table_names)-1)):
table_mask = numpy.array([True] + [(case // 2**(ti)) % 2 == 0 for ti in range(len(tables)-1)])
ncat = table_mask.sum()
# select those cases
mask = True
for i in range(1, len(tables)):
if table_mask[i]: # require not nan
mask = numpy.logical_and(mask, ~numpy.isnan(separations[0][i]))
else:
mask = numpy.logical_and(mask, numpy.isnan(separations[0][i]))
# select errors
if simple_errors:
errors_selected = [e[mask] for e, m in zip(errors, table_mask) if m]
separations_selected = [[cell[mask] for cell, m in zip(row, table_mask) if m]
for row, m in zip(separations, table_mask) if m]
log_bf[mask] = bayesdist.log_bf(separations_selected, errors_selected)
else:
errors_selected = [(era[mask], edec[mask], ephi[mask])
for (era, edec, ephi), m in zip(errors, table_mask) if m]
separations_selected_ra = [[cell[mask] for cell, m in zip(row, table_mask) if m]
for row, m in zip(separations_ra, table_mask) if m]
separations_selected_dec = [[cell[mask] for cell, m in zip(row, table_mask) if m]
for row, m in zip(separations_dec, table_mask) if m]
log_bf[mask] = bayesdist.log_bf_elliptical(
separations_selected_ra, separations_selected_dec, errors_selected)
prior[mask] = source_densities[0] * numpy.product(prior_completeness[table_mask]) / numpy.product(source_densities_plus[table_mask])
assert numpy.isfinite(prior[mask]).all(), (source_densities, prior_completeness[table_mask], numpy.product(source_densities_plus[table_mask]))
assert numpy.isfinite(prior).all(), (prior, log_bf)
assert numpy.isfinite(log_bf).all(), (prior, log_bf)
columns.append(pyfits.Column(name='dist_bayesfactor', format='E', array=log_bf))
ncat = table['ncat']
ncats = len(tables)
if args.consider_unrelated_associations:
candidates = numpy.where(ncat <= ncats - 2)[0]
if len(candidates) > 0:
print(' correcting for unrelated associations ...')
# correct for unrelated associations
# identify those in need of correction
# two unconsidered catalogues are needed for an unrelated association
for i in tqdm.tqdm(candidates):
# list which ones we are missing
missing_cats = [k for k, sep in enumerate(separations[0]) if numpy.isnan(sep[i])]
pid = table[primary_id_key][i]
pid_index = primary_ids.index(pid)
best_logpost = 0
# go through more complex associations
for j in range(primary_id_start[pid_index], primary_id_end[pid_index]):
if not (ncat[j] > 2): continue
# check if this association has sufficient overlap with the one we are looking for
# it must contain at least two of the catalogues we are missing
augmented_cats = []
for k in missing_cats:
if not numpy.isnan(separations[0][k][j]):
augmented_cats.append(k)
n_augmented_cats = len(augmented_cats)
if n_augmented_cats >= 2:
# ok, this is helpful.
# identify the separations and errors
# identify the prior
prior_j = source_densities[augmented_cats[0]] / numpy.product(source_densities_plus[augmented_cats])
# compute a log_bf
if simple_errors:
errors_selected = [[errors[k][j]] for k in augmented_cats]
separations_selected = [[[separations[k][k2][j]]
for k2 in augmented_cats] for k in augmented_cats]
log_bf_j = bayesdist.log_bf(numpy.array(separations_selected),
numpy.array(errors_selected))
else:
separations_selected_ra = [[[separations_ra[k][k2][j]]
for k2 in augmented_cats] for k in augmented_cats]
separations_selected_dec = [[[separations_dec[k][k2][j]]
for k2 in augmented_cats] for k in augmented_cats]
errors_selected = [([errors[k][0][j]], [errors[k][1][j]], [errors[k][2][j]])
for k in augmented_cats]
log_bf_j = bayesdist.log_bf_elliptical(numpy.array(separations_selected_ra),
numpy.array(separations_selected_dec),
numpy.array(errors_selected))
logpost_j = bayesdist.unnormalised_log_posterior(prior_j, log_bf_j, n_augmented_cats)
if logpost_j > best_logpost:
#print('post:', logpost_j, log_bf_j, prior_j)
best_logpost = logpost_j
# ok, we have our correction factor, best_logpost
# lets multiply it onto log_bf
if best_logpost > 0:
log_bf[i] += best_logpost
columns.append(pyfits.Column(name='dist_bayesfactor_corrected', format='E', array=log_bf))
else:
print(' correcting for unrelated associations ... not necessary')
# add the additional columns
post = bayesdist.posterior(prior, log_bf)
columns.append(pyfits.Column(name='dist_post', format='E', array=post))
# find magnitude biasing functions
if magnitude_columns:
print()
print('Incorporating magnitude biases ...')
biases = {}
for mag, magfile in magnitude_columns:
print(' magnitude bias "%s" ...' % mag)
table_name, col_name = mag.split(':', 1)
assert table_name in table_names, 'table name specified for magnitude ("%s") unknown. Known tables: %s' % (table_name, ', '.join(table_names))
ti = table_names.index(table_name)
col_names = tables[ti].dtype.names
assert col_name in col_names, 'column name specified for magnitude ("%s") unknown. Known columns in table "%s": %s' % (mag, table_name, ', '.join(col_names))
ci = col_names.index(col_name)
res = results[table_name]
res_defined = results[table_name] != -1
# get magnitudes of all
mag_all = tables[ti][col_name]
# mark -99 as undefined
mag_all[mag_all == -99] = numpy.nan
# get magnitudes of selected
mask_all = ~numpy.logical_or(numpy.isnan(mag_all), numpy.isinf(mag_all))
col = "%s_%s" % (table_name, col_name)
if magfile == 'auto':
if mag_include_radius is not None:
if mag_include_radius >= match_radius * 60 * 60:
print('WARNING: magnitude radius is very large (>= matching radius). Consider using a smaller value.')
selection = table['Separation_max'] < mag_include_radius
selection_possible = table['Separation_max'] < mag_exclude_radius
selection_weights = numpy.ones(len(selection))
else:
selection = post > magauto_post_single_minvalue
selection_weights = post
selection_possible = post > 0.01
# ignore cases where counterpart is missing
assert res_defined.shape == selection.shape, (res_defined.shape, selection.shape)
selection = numpy.logical_and(selection, res_defined)
selection_weights = selection_weights[selection]
selection_possible = numpy.logical_and(selection_possible, res_defined)
#print ' selection', selection.sum(), selection_possible.sum(), (-selection_possible).sum()
#rows = results[table_name][selection].tolist()
rows, unique_indices = numpy.unique(results[table_name][selection], return_index=True)
rows_weights = selection_weights[unique_indices]
assert len(rows) > 1, 'No magnitude values within radius for "%s".' % mag
mag_sel = mag_all[rows]
mag_sel_weights = rows_weights
# remove vaguely possible options from alternative histogram
rows_possible = numpy.unique(results[table_name][selection_possible])
mask_others = mask_all.copy()
mask_others[rows_possible] = False
# all options in the total (field+target sources) histogram
mask_sel = ~numpy.logical_or(numpy.isnan(mag_sel), numpy.isinf(mag_sel))
#print ' non-nans: ', mask_sel.sum(), mask_others.sum()
print(' magnitude histogram of column "%s": %d secure matches, %d insecure matches and %d secure non-matches of %d total entries (%d valid)' % (col, mask_sel.sum(), len(rows_possible), mask_others.sum(), len(mag_all), mask_all.sum()))
# make function fitting to ratio shape
bins, hist_sel, hist_all = magnitudeweights.adaptive_histograms(mag_all[mask_others], mag_sel[mask_sel], weights=mag_sel_weights[mask_sel])
print(' magnitude histogram stored to "%s".' % (mag.replace(':', '_') + '_fit.txt'))
with open(mag.replace(':', '_') + '_fit.txt', 'wb') as f:
f.write(b'# lo hi selected others\n')
numpy.savetxt(f,
numpy.transpose([bins[:-1], bins[1:], hist_sel, hist_all]),
fmt = ["%10.5f"]*4)
if mask_sel.sum() < 100:
print('ERROR: too few secure matches to make a good histogram. If you are sure you want to use this poorly sampled histogram, replace "auto" with the filename. You can also decrease the mag-auto-minprob parameter.')
sys.exit(1)
else:
print(' magnitude histogramming: using histogram from "%s" for column "%s"' % (magfile, col))
bins_lo, bins_hi, hist_sel, hist_all = numpy.loadtxt(magfile).transpose()
bins = numpy.array(list(bins_lo) + [bins_hi[-1]])
func = magnitudeweights.fitfunc_histogram(bins, hist_sel, hist_all)
magnitudeweights.plot_fit(bins, hist_sel, hist_all, func, mag)
weights = log10(func(table[col]))
# undefined magnitudes do not contribute
weights[numpy.isnan(weights)] = 0
biases[col] = weights
# add the bias columns
for col, weights in biases.items():
columns.append(pyfits.Column(name='bias_%s' % col, format='E', array=10**weights))
print()
print('Computing final probabilities ...')
# add the posterior column
total = log_bf + sum(biases.values())
post = bayesdist.posterior(prior, total)
columns.append(pyfits.Column(name='p_single', format='E', array=post))
# compute weights for group posteriors
# 4pi comes from Eq.
log_post_weight = bayesdist.unnormalised_log_posterior(prior, total, ncat)
# flagging of solutions. Go through groups by primary id (IDs in first catalogue)
index = numpy.zeros_like(post)
prob_has_match = numpy.zeros_like(post)
prob_this_match = numpy.zeros_like(post)
match_header['COL_PRIM'] = primary_id_key
match_header['COLS_ERR'] = ' '.join(['%s_%s' % (ti, poscol) for ti, poscol in zip(table_names, pos_errors)])
print(' grouping by column "%s" and flagging ...' % (primary_id_key))
pid_index = primary_ids.index(pid)
best_log_bf = 0
# go through more complex associations
for primary_id, ilo, ihi in tqdm.tqdm(list(zip(primary_ids, primary_id_start, primary_id_end))):
# group
mask = slice(ilo, ihi)
# compute no-match probability
values = log_post_weight[mask]
offset = values.max()
bfsum = log10((10**(values - offset)).sum()) + offset
if len(values) > 1:
offset = values[1:].max()
bfsum1 = log10((10**(values[1:] - offset)).sum()) + offset
else:
bfsum1 = 0
# for p_any, find the one without counterparts
p_none = float(values[0])
p_any = 1 - 10**(p_none - bfsum)
# this avoids overflows in the no-counterpart solution,
# which we want to set to 0
values[0] = bfsum1
p_i = 10**(values - bfsum1)
p_i[0] = 0
prob_has_match[mask] = p_any
prob_this_match[mask] = p_i
best_val = p_i.max()
# flag best & second best
# ignore very poor solutions
index[mask] = numpy.where(best_val == p_i, 1,
numpy.where(p_i > diff_secondary * best_val, 2, 0))
columns.append(pyfits.Column(name='p_any', format='E', array=prob_has_match))
columns.append(pyfits.Column(name='p_i', format='E', array=prob_this_match))
#index[ncat == 1] == -1
# add the flagging column
columns.append(pyfits.Column(name='match_flag', format='I', array=index))
# cut away poor posteriors if requested
if min_prob > 0:
mask = ~(prob_this_match < min_prob)
print(' cutting away %d (below p_i minimum)' % (len(mask) - mask.sum()))
for c in columns:
c.array = c.array[mask]
if not filenames[0].endswith('shifted.fits'):
print()
print()
print(' You can calibrate a p_any cut-off with the following steps:')
print(' 1) Create a offset catalogue to simulate random sky positions:')
shiftfile = filenames[0].replace('.fits', '').replace('.FITS', '') + '-fake.fits'
shiftoutfile = outfile + '-fake.fits'
print(' nway-create-fake-catalogue.py --radius %d %s %s' % (args.radius*2, filenames[0], shiftfile))
print(' 2) Match the offset catalogue in the same way as this run:')
newargv = []
i = 0
while i < len(sys.argv):
v = sys.argv[i]
if v == filenames[0]:
newargv.append(shiftfile)
elif v == '--mag':
newargv.append(v)
v = sys.argv[i+1]
newargv.append(v)
if sys.argv[i+2] == 'auto':
newargv.append(v.replace(':', '_') + '_fit.txt')
else:
newargv.append(sys.argv[i+2])
i = i + 2
elif v == '--out':
newargv.append(v)
i = i + 1
newargv.append(shiftoutfile)
elif v.startswith('--out='):
newargv.append('--out=' + shiftoutfile)
else:
newargv.append(v)
i = i + 1
print(' ' + ' '.join(newargv))
print(' 3) determining the p_any cutoff that corresponds to a false-detection rate')
print(' nway-calibrate-cutoff.py %s %s' % (outfile, shiftoutfile))
print()
# write out fits file
print()
print('creating output FITS file ...')
tbhdu = match.fits_from_columns(pyfits.ColDefs(columns))
hdulist = match.wraptable2fits(tbhdu, 'NWAYMATCH')
hdulist[0].header['METHOD'] = 'NWAY multi-way matching'
hdulist[0].header['INPUT'] = ', '.join(filenames)
hdulist[0].header['TABLES'] = ', '.join(table_names)
hdulist[0].header['BIASING'] = ', '.join(biases.keys())
hdulist[0].header['NWAYCMD'] = ' '.join(sys.argv)
for k, v in args.__dict__.items():
hdulist[0].header.add_comment("argument %s: %s" % (k, v))
hdulist[0].header.update(match_header)
print(' writing "%s" (%d rows, %d columns) ...' % (outfile, len(tbhdu.data), len(columns)))
hdulist.writeto(outfile, **progress.kwargs_overwrite_true)
import nwaylib.checkupdates
nwaylib.checkupdates.checkupdates()