-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMaterial.hpp
298 lines (255 loc) · 9.73 KB
/
Material.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#ifndef GPU_RAY_TRACER_MATERIAL_HPP_
#define GPU_RAY_TRACER_MATERIAL_HPP_
#include "Preprocessor.hpp"
#include "Random.hpp"
#include "Hittable.hpp"
#include "Ray.hpp"
#include "Util.hpp"
#include "glm/common.hpp"
#include "types.hpp"
#include <glm/geometric.hpp>
struct hit_record;
enum class material_id {
Lambertian,
Metal,
Dielectric,
Emissive,
Photoluminous,
None
};
struct IMaterial {
__host__ __device__ virtual bool scatter(RandomState *state, const ray &r_in,
const hit_record &rec,
color &attenuation,
ray &scattered) const = 0;
};
struct lambertian : public IMaterial {
__host__ __device__ inline lambertian(const color &a) : albedo(a) {}
__host__ __device__ inline bool scatter(RandomState *state, const ray &r_in,
const hit_record &rec,
color &attenuation,
ray &scattered) const override {
vec3 scatter_direction =
rec.normal + random_in_hemisphere(state, rec.normal);
scattered = ray(rec.point, scatter_direction);
attenuation = albedo;
return true;
}
color albedo;
};
struct metal : public IMaterial {
__host__ __device__ inline metal(const color &a, num f)
: albedo(a), fuzz(fminf(f, CONST(1))) {}
__host__ __device__ inline bool scatter(RandomState *state, const ray &r_in,
const hit_record &rec,
color &attenuation,
ray &scattered) const override {
vec3 reflected = glm::reflect(glm::normalize(r_in.direction()), rec.normal);
scattered = ray(rec.point,
reflected + fuzz * random_in_hemisphere(state, rec.normal));
attenuation = albedo;
return (glm::dot(scattered.direction(), rec.normal) > CONST(0));
}
color albedo;
num fuzz;
};
struct dielectric : public IMaterial {
__host__ __device__ inline dielectric(const color &a, num index_of_refraction)
: albedo(a), ir(index_of_refraction) {}
__host__ __device__ inline bool scatter(RandomState *state, const ray &r_in,
const hit_record &rec,
color &attenuation,
ray &scattered) const override {
attenuation = albedo;
num refraction_ratio = rec.front_face ? (CONST(1) / ir) : ir;
vec3 unit_direction = glm::normalize(r_in.direction());
num cos_theta = fminf(glm::dot(-unit_direction, rec.normal), CONST(1));
num sin_theta = sqrtf(CONST(1) - cos_theta * cos_theta);
bool cannot_refract = refraction_ratio * sin_theta > CONST(1);
vec3 direction;
if (cannot_refract) {
direction = glm::reflect(unit_direction, rec.normal);
} else if (reflectance(cos_theta, refraction_ratio) >
random_positive_unit(state)) {
direction = glm::reflect(unit_direction, rec.normal);
} else {
direction = glm::refract(unit_direction, rec.normal, refraction_ratio);
}
scattered = ray(rec.point, direction);
return true;
}
color albedo;
num ir; // Index of Refraction
private:
__host__ __device__ static inline num reflectance(num cosine, num ref_idx) {
// Use Schlick's approximation for reflectance.
num r0 = (CONST(1) - ref_idx) / (CONST(1) + ref_idx);
r0 = r0 * r0;
return r0 + (CONST(1) - r0) * powf((CONST(1) - cosine), 5);
}
};
struct emissive : public IMaterial {
__host__ __device__ inline emissive(const color &c, const num intensity)
: emitted_color(c * intensity) {}
__host__ __device__ inline bool scatter(RandomState *state, const ray &r_in,
const hit_record &rec,
color &attenuation,
ray &scattered) const override {
return false;
}
color emitted_color;
};
struct photoluminous : public IMaterial {
__host__ __device__ inline photoluminous(const color &a, num i)
: albedo(a), intensity(i) {}
__host__ __device__ inline bool scatter(RandomState *state, const ray &r_in,
const hit_record &rec,
color &attenuation,
ray &scattered) const override {
// Calculating a lambertian bounce
vec3 reflected = glm::reflect(glm::normalize(r_in.direction()), rec.normal);
scattered = ray(rec.point,
reflected + 0.05f * random_in_hemisphere(state, rec.normal));
// Calculating color based on the surface normal
color norm_color = (rec.normal + 1.0f) * 0.5f;
attenuation = glm::mix(albedo, norm_color, intensity);
return true;
}
color albedo;
num intensity;
};
struct null_material : public IMaterial {
__host__ __device__ inline null_material() {}
__host__ __device__ inline bool scatter(RandomState *state, const ray &r_in,
const hit_record &rec,
color &attenuation,
ray &scattered) const override {
return false;
}
};
union material_data {
lambertian l;
metal m;
dielectric d;
emissive e;
photoluminous p;
null_material n;
__host__ __device__ inline material_data(lambertian const &l) : l(l) {}
__host__ __device__ inline material_data(metal const &m) : m(m) {}
__host__ __device__ inline material_data(dielectric const &d) : d(d) {}
__host__ __device__ inline material_data(emissive const &e) : e(e) {}
__host__ __device__ inline material_data(photoluminous const &p) : p(p) {}
__host__ __device__ inline material_data(lambertian &&l) : l(std::move(l)) {}
__host__ __device__ inline material_data(metal &&m) : m(std::move(m)) {}
__host__ __device__ inline material_data(dielectric &&d) : d(std::move(d)) {}
__host__ __device__ inline material_data(emissive &&e) : e(std::move(e)) {}
__host__ __device__ inline material_data(photoluminous &&p)
: p(std::move(p)) {}
__host__ __device__ inline material_data() : n() {}
template <typename... Args>
__host__ __device__ inline bool scatter(material_id id,
Args &&...args) const {
switch (id) {
case material_id::Lambertian:
return l.scatter(std::forward<Args>(args)...);
case material_id::Metal:
return m.scatter(std::forward<Args>(args)...);
case material_id::Dielectric:
return d.scatter(std::forward<Args>(args)...);
case material_id::Emissive:
return e.scatter(std::forward<Args>(args)...);
case material_id::Photoluminous:
return p.scatter(std::forward<Args>(args)...);
default:
return n.scatter(std::forward<Args>(args)...);
}
}
__host__ __device__ inline color emit(material_id id) const {
switch (id) {
case material_id::Emissive:
return e.emitted_color;
default:
return color{0, 0, 0};
}
}
};
struct material {
__host__ __device__ inline material(lambertian const &l)
: id(material_id::Lambertian), data(l) {}
__host__ __device__ inline material(metal const &m)
: id(material_id::Metal), data(m) {}
__host__ __device__ inline material(dielectric const &d)
: id(material_id::Dielectric), data(d) {}
__host__ __device__ inline material(emissive const &e)
: id(material_id::Emissive), data(e) {}
__host__ __device__ inline material(photoluminous const &p)
: id(material_id::Photoluminous), data(p) {}
__host__ __device__ inline material(lambertian &&l)
: id(material_id::Lambertian), data(std::move(l)) {}
__host__ __device__ inline material(metal &&m)
: id(material_id::Metal), data(std::move(m)) {}
__host__ __device__ inline material(dielectric &&d)
: id(material_id::Dielectric), data(std::move(d)) {}
__host__ __device__ inline material(emissive &&e)
: id(material_id::Emissive), data(std::move(e)) {}
__host__ __device__ inline material(photoluminous &&p)
: id(material_id::Photoluminous), data(std::move(p)) {}
__host__ __device__ inline material() : id(material_id::None), data() {}
__host__ __device__ inline material(material const &m) : id(m.id), data() {
switch (m.id) {
case material_id::Lambertian:
data.l = m.data.l;
break;
case material_id::Metal:
data.m = m.data.m;
break;
case material_id::Dielectric:
data.d = m.data.d;
break;
case material_id::Emissive:
data.e = m.data.e;
break;
case material_id::Photoluminous:
data.p = m.data.p;
break;
case material_id::None:
break;
}
}
__host__ __device__ material &operator=(material const &m) {
if (&m != this) {
id = m.id;
switch (m.id) {
case material_id::Lambertian:
data.l = m.data.l;
break;
case material_id::Metal:
data.m = m.data.m;
break;
case material_id::Dielectric:
data.d = m.data.d;
break;
case material_id::Emissive:
data.e = m.data.e;
break;
case material_id::Photoluminous:
data.p = m.data.p;
break;
case material_id::None:
break;
}
}
return *this;
}
__host__ __device__ inline bool scatter(RandomState *state, const ray &r_in,
const hit_record &rec,
color &attenuation,
ray &scattered) const {
return data.scatter(id, state, r_in, rec, attenuation, scattered);
}
__host__ __device__ inline color emit() const { return data.emit(id); }
public:
material_id id;
material_data data;
};
#endif