-
Notifications
You must be signed in to change notification settings - Fork 0
/
vec3.h
146 lines (111 loc) · 3.05 KB
/
vec3.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
//
// Created by Jorge on 12/16/2024.
//
#ifndef VEC3_H
#define VEC3_H
#include <cmath>
#include <iostream>
class vec3 {
public:
double e[3];
vec3() : e{0,0,0} {}
vec3(double e0, double e1, double e2) : e{e0, e1, e2} {};
double x() const {return e[0];}
double y() const {return e[1];}
double z() const {return e[2];}
// operator overloading
vec3 operator-() const {return vec3(-e[0], -e[1], -e[2]);}
double operator[](int i) const {return e[i];}
double& operator[](int i) {return e[i];}
//+=
vec3& operator+=(const vec3 &v) {
e[0] += v.e[0];
e[1] += v.e[1];
e[2] += v.e[2];
return *this;
}
// *=
vec3& operator*=(const double t) {
e[0] *= t;
e[1] *= t;
e[2] *= t;
return *this;
}
// /=
vec3& operator/=(const double t) {
return *this *= 1/t;
}
// length and length_squared
double length() const {
return std::sqrt(length_squared());
}
double length_squared() const {
return e[0]*e[0] + e[1]*e[1] + e[2]*e[2];
}
static vec3 random()
{
return vec3(random_double(), random_double(), random_double());
}
static vec3 random(double min, double max)
{
return vec3(random_double(min, max), random_double(min, max), random_double(min, max));
}
};
// type aliases for vec3
using point3 = vec3; // 3D point
using color = vec3;
// utility functions
inline std::ostream& operator<<(std::ostream &out, const vec3 &v) {
return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2];
}
inline vec3 operator+(const vec3 &u, const vec3 &v) {
return vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]);
}
inline vec3 operator-(const vec3 &u, const vec3 &v) {
return vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]);
}
inline vec3 operator*(const vec3 &u, const vec3 &v) {
return vec3(u.e[0] * v.e[0], u.e[1] * v.e[1], u.e[2] * v.e[2]);
}
inline vec3 operator*(double t, const vec3 &v) {
return vec3(t*v.e[0], t*v.e[1], t*v.e[2]);
}
inline vec3 operator*(const vec3 &v, double t) {
return t * v;
}
inline vec3 operator/(vec3 v, double t) {
return (1/t) * v;
}
// dot product
inline double dot(const vec3 &u, const vec3 &v) {
return u.e[0]*v.e[0] + u.e[1]*v.e[1] + u.e[2]*v.e[2];
}
// cross product
inline vec3 cross(const vec3 &u, const vec3 &v) {
return vec3(u.e[1]*v.e[2] - u.e[2]*v.e[1],
u.e[2]*v.e[0] - u.e[0]*v.e[2],
u.e[0]*v.e[1] - u.e[1]*v.e[0]);
}
// unit vector
inline vec3 unit_vector(const vec3& v) {
return v / v.length();
}
inline vec3 random_unit_vector() {
while (true)
{
auto p = vec3::random(-1, 1);
auto lensq = p.length_squared();
if (1e-160 < lensq && lensq <= 1) return p / std::sqrt(lensq);
}
}
inline vec3 random_on_hemisphere(const vec3& normal)
{
auto in_unit_sphere = random_unit_vector();
if (dot(in_unit_sphere, normal) > 0.0)
{
return in_unit_sphere;
} else {
return -in_unit_sphere;
}
}
#endif //VEC3_H