diff --git a/.github/workflows/CI.yml b/.github/workflows/CI.yml index b486960..6545529 100644 --- a/.github/workflows/CI.yml +++ b/.github/workflows/CI.yml @@ -16,12 +16,11 @@ jobs: matrix: julia-version: - "1.0" + - "1.6" - "1" - "nightly" os: - ubuntu-latest - - macos-latest - - windows-latest julia-arch: - x64 steps: diff --git a/Project.toml b/Project.toml index 2498d44..64a673d 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "MLJSerialization" uuid = "17bed46d-0ab5-4cd4-b792-a5c4b8547c6d" authors = ["Anthony D. Blaom "] -version = "1.1.2" +version = "1.1.3" [deps] IterationControl = "b3c1a2ee-3fec-4384-bf48-272ea71de57c" @@ -10,9 +10,9 @@ MLJBase = "a7f614a8-145f-11e9-1d2a-a57a1082229d" MLJModelInterface = "e80e1ace-859a-464e-9ed9-23947d8ae3ea" [compat] -IterationControl = "0.4" +IterationControl = "0.4,0.5" JLSO = "2.1" -MLJBase = "0.18" +MLJBase = "0.18,0.19" MLJModelInterface = "0.4, 1.0" julia = "1" @@ -20,11 +20,10 @@ julia = "1" CategoricalArrays = "324d7699-5711-5eae-9e2f-1d82baa6b597" DecisionTree = "7806a523-6efd-50cb-b5f6-3fa6f1930dbb" Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f" -MLJScientificTypes = "2e2323e0-db8b-457b-ae0d-bdfb3bc63afd" Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" StableRNGs = "860ef19b-820b-49d6-a774-d7a799459cd3" Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [targets] -test = ["CategoricalArrays", "DecisionTree", "Distributions", "MLJScientificTypes", "Random", "StableRNGs", "Statistics", "Test"] +test = ["CategoricalArrays", "DecisionTree", "Distributions", "Random", "StableRNGs", "Statistics", "Test"] diff --git a/README.md b/README.md index 2426135..d029baa 100644 --- a/README.md +++ b/README.md @@ -2,7 +2,7 @@ | Linux | Coverage | | :-----------: | :------: | -| [![Build status](https://github.com/JuliaAI/MLJSerialization.jl/workflows/CI/badge.svg)](https://github.com/JuliaAI/MLJSerialization.jl/actions)| [![codecov.io](http://codecov.io/github/JuliaAI/MLJSerialization.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaAI/MLJSerialization.jl?branch=master) | +| [![Build status](https://github.com/JuliaAI/MLJSerialization.jl/workflows/CI/badge.svg)](https://github.com/JuliaAI/MLJSerialization.jl/actions)| [![codecov.io](http://codecov.io/github/JuliaAI/MLJSerialization.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaAI/MLJSerialization.jl?branch=dev) | A package adding model serialization to the [MLJ](https://alan-turing-institute.github.io/MLJ.jl/dev/) machine diff --git a/test/_dummy_model.jl b/test/_dummy_model.jl index 49129ab..8286ca0 100644 --- a/test/_dummy_model.jl +++ b/test/_dummy_model.jl @@ -149,9 +149,9 @@ MMI.training_losses(::DummyIterativeModel, report) = report.training_losses MMI.supports_training_losses(::Type{<:DummyIterativeModel}) = true MMI.input_scitype(::Type{<:DummyIterativeModel}) = - AbstractVector{<:MMI.ScientificTypes.Finite} + AbstractVector{<:MMI.ScientificTypesBase.Finite} MMI.target_scitype(::Type{<:DummyIterativeModel}) = - AbstractVector{<:MMI.ScientificTypes.Continuous} + AbstractVector{<:MMI.ScientificTypesBase.Continuous} # # FOR SYTHESIZING DATA FOR USE WITH DUMMY MODEL diff --git a/test/_models/DecisionTree.jl b/test/_models/DecisionTree.jl index e8ebe83..f46d191 100644 --- a/test/_models/DecisionTree.jl +++ b/test/_models/DecisionTree.jl @@ -3,8 +3,6 @@ export DecisionTreeClassifier, DecisionTreeRegressor import MLJBase import MLJBase: @mlj_model, metadata_pkg, metadata_model -using MLJScientificTypes - using CategoricalArrays import DecisionTree @@ -207,13 +205,13 @@ metadata_pkg.((DecisionTreeClassifier, DecisionTreeRegressor), is_wrapper=false) metadata_model(DecisionTreeClassifier, - input=MLJBase.Table(Continuous, Count, OrderedFactor), - target=AbstractVector{<:MLJBase.Finite}, + input=MLJModelInterface.Table(Continuous, Count, OrderedFactor), + target=AbstractVector{<:MLJModelInterface.Finite}, weights=false, descr=DTC_DESCR) metadata_model(DecisionTreeRegressor, - input=MLJBase.Table(Continuous, Count, OrderedFactor), - target=AbstractVector{MLJBase.Continuous}, + input=MLJModelInterface.Table(Continuous, Count, OrderedFactor), + target=AbstractVector{MLJModelInterface.Continuous}, weights=false, descr=DTR_DESCR)