Commits: JuliaLang/julia@ec5abc0aca9a441da707dac1fa22bc836997ec77 vs JuliaLang/julia@cb2fa5d8483906f6e4c3b47f975e1c5ee2819d04
Comparison Diff: link
Triggered By: link
Tag Predicate: "inference"
Note: If Chrome is your browser, I strongly recommend installing the Wide GitHub extension, which makes the result table easier to read.
Below is a table of this job's results, obtained by running the benchmarks found in
JuliaCI/BaseBenchmarks.jl. The values
listed in the ID
column have the structure [parent_group, child_group, ..., key]
,
and can be used to index into the BaseBenchmarks suite to retrieve the corresponding
benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true" time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
A ratio greater than 1.0
denotes a possible regression (marked with ❌), while a ratio less
than 1.0
denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).
ID | time ratio | memory ratio |
---|---|---|
["inference", "abstract interpretation", "abstract_call_gf_by_type"] |
0.94 (5%) ✅ | 0.96 (1%) ✅ |
["inference", "abstract interpretation", "construct_ssa!"] |
0.94 (5%) ✅ | 0.96 (1%) ✅ |
["inference", "abstract interpretation", "domsort_ssa!"] |
0.95 (5%) ✅ | 0.96 (1%) ✅ |
["inference", "abstract interpretation", "println(::QuoteNode)"] |
0.96 (5%) | 0.96 (1%) ✅ |
["inference", "abstract interpretation", "rand(Float64)"] |
0.97 (5%) | 0.97 (1%) ✅ |
["inference", "abstract interpretation", "sin(42)"] |
0.95 (5%) | 0.95 (1%) ✅ |
["inference", "domsort_ssa!"] |
0.94 (5%) ✅ | 0.99 (1%) |
["inference", "optimization", "abstract_call_gf_by_type"] |
1.05 (5%) ❌ | 1.07 (1%) ❌ |
["inference", "rand(Float64)"] |
0.94 (5%) ✅ | 0.99 (1%) |
["inference", "sin(42)"] |
0.94 (5%) ✅ | 0.99 (1%) |
Here's a list of all the benchmark groups executed by this job:
["inference", "abstract interpretation"]
["inference"]
["inference", "optimization"]
Julia Version 1.9.0-DEV.162
Commit ec5abc0aca (2022-03-09 05:28 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 20.04.3 LTS
uname: Linux 5.4.0-94-generic #106-Ubuntu SMP Thu Jan 6 23:58:14 UTC 2022 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3500 MHz 206912 s 473 s 35352 s 46807213 s 0 s
#2 3500 MHz 3939957 s 346 s 156422 s 42993167 s 0 s
#3 3500 MHz 232996 s 340 s 26710 s 46824454 s 0 s
#4 3500 MHz 153827 s 321 s 25775 s 46688735 s 0 s
Memory: 31.32097625732422 GB (7585.3828125 MB free)
Uptime: 4.71314584e6 sec
Load Avg: 1.0 1.08 1.05
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-13.0.1 (ORCJIT, haswell)
Threads: 1 on 4 virtual cores
Julia Version 1.9.0-DEV.160
Commit cb2fa5d848 (2022-03-09 01:44 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 20.04.3 LTS
uname: Linux 5.4.0-94-generic #106-Ubuntu SMP Thu Jan 6 23:58:14 UTC 2022 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3751 MHz 207446 s 473 s 35382 s 46814626 s 0 s
#2 3600 MHz 3946318 s 346 s 156509 s 42994705 s 0 s
#3 3539 MHz 233564 s 340 s 26734 s 46831862 s 0 s
#4 3561 MHz 154374 s 321 s 25796 s 46696148 s 0 s
Memory: 31.32097625732422 GB (7587.0625 MB free)
Uptime: 4.71394621e6 sec
Load Avg: 1.01 1.01 1.0
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-13.0.1 (ORCJIT, haswell)
Threads: 1 on 4 virtual cores