Skip to content

Latest commit

 

History

History
executable file
·
1157 lines (989 loc) · 36.5 KB

working_with_dataframes.md

File metadata and controls

executable file
·
1157 lines (989 loc) · 36.5 KB

Working with Data Frames

Examining the Data

The default printing of DataFrame objects only includes a sample of rows and columns that fits on screen:

julia> using DataFrames

julia> df = DataFrame(A=1:2:1000, B=repeat(1:10, inner=50), C=1:500)
500×3 DataFrame
 Row │ A      B      C
     │ Int64  Int64  Int64
─────┼─────────────────────
   1 │     1      1      1
   2 │     3      1      2
   3 │     5      1      3
   4 │     7      1      4
   5 │     9      1      5
   6 │    11      1      6
   7 │    13      1      7
   8 │    15      1      8
  ⋮  │   ⋮      ⋮      ⋮
 494 │   987     10    494
 495 │   989     10    495
 496 │   991     10    496
 497 │   993     10    497
 498 │   995     10    498
 499 │   997     10    499
 500 │   999     10    500
           485 rows omitted

Printing options can be adjusted by calling the show function manually: show(df, allrows=true) prints all rows even if they do not fit on screen and show(df, allcols=true) does the same for columns.

The first and last functions can be used to look at the first and last rows of a data frame (respectively):

julia> first(df, 6)
6×3 DataFrame
 Row │ A      B      C
     │ Int64  Int64  Int64
─────┼─────────────────────
   1 │     1      1      1
   2 │     3      1      2
   3 │     5      1      3
   4 │     7      1      4
   5 │     9      1      5
   6 │    11      1      6

julia> last(df, 6)
6×3 DataFrame
 Row │ A      B      C
     │ Int64  Int64  Int64
─────┼─────────────────────
   1 │   989     10    495
   2 │   991     10    496
   3 │   993     10    497
   4 │   995     10    498
   5 │   997     10    499
   6 │   999     10    500

Also notice that when DataFrame is printed to the console or rendered in HTML (e.g. in Jupyter Notebook) you get an information about type of elements held in its columns. For example in this case:

julia> using CategoricalArrays

julia> DataFrame(a=1:2, b=[1.0, missing],
                 c=categorical('a':'b'), d=[1//2, missing])
2×4 DataFrame
 Row │ a      b          c     d
     │ Int64  Float64?   Cat…  Rational…?
─────┼────────────────────────────────────
   1 │     1        1.0  a           1//2
   2 │     2  missing    b        missing

we can observe that:

  • the first column :a can hold elements of type Int64;
  • the second column :b can hold Float64 or Missing, which is indicated by ? printed after the name of type;
  • the third column :c can hold categorical data; here we notice , which indicates that the actual name of the type was long and got truncated;
  • the type information in fourth column :d presents a situation where the name is both truncated and the type allows Missing.

Taking a Subset

Indexing syntax

Specific subsets of a data frame can be extracted using the indexing syntax, similar to matrices. In the Indexing section of the manual you can find all the details about the available options. Here we highlight the basic options.

The colon : indicates that all items (rows or columns depending on its position) should be retained:

julia> df[1:3, :]
3×3 DataFrame
 Row │ A      B      C
     │ Int64  Int64  Int64
─────┼─────────────────────
   1 │     1      1      1
   2 │     3      1      2
   3 │     5      1      3

julia> df[[1, 5, 10], :]
3×3 DataFrame
 Row │ A      B      C
     │ Int64  Int64  Int64
─────┼─────────────────────
   1 │     1      1      1
   2 │     9      1      5
   3 │    19      1     10

julia> df[:, [:A, :B]]
500×2 DataFrame
 Row │ A      B
     │ Int64  Int64
─────┼──────────────
   1 │     1      1
   2 │     3      1
   3 │     5      1
   4 │     7      1
   5 │     9      1
   6 │    11      1
   7 │    13      1
   8 │    15      1
  ⋮  │   ⋮      ⋮
 494 │   987     10
 495 │   989     10
 496 │   991     10
 497 │   993     10
 498 │   995     10
 499 │   997     10
 500 │   999     10
    485 rows omitted

julia> df[1:3, [:B, :A]]
3×2 DataFrame
 Row │ B      A
     │ Int64  Int64
─────┼──────────────
   1 │     1      1
   2 │     1      3
   3 │     1      5

julia> df[[3, 1], [:C]]
2×1 DataFrame
 Row │ C
     │ Int64
─────┼───────
   1 │     3
   2 │     1

Do note that df[!, [:A]] and df[:, [:A]] return a DataFrame object, while df[!, :A] and df[:, :A] return a vector:

julia> df[!, [:A]]
500×1 DataFrame
 Row │ A
     │ Int64
─────┼───────
   1 │     1
   2 │     3
   3 │     5
   4 │     7
   5 │     9
   6 │    11
   7 │    13
   8 │    15
  ⋮  │   ⋮
 494 │   987
 495 │   989
 496 │   991
 497 │   993
 498 │   995
 499 │   997
 500 │   999
485 rows omitted

julia> df[!, [:A]] == df[:, [:A]]
true

julia> df[!, :A]
500-element Vector{Int64}:
   1
   3
   5
   7
   9
  11
  13
  15
  17
  19
   ⋮
 983
 985
 987
 989
 991
 993
 995
 997
 999

julia> df[!, :A] == df[:, :A]
true

In the first case, [:A] is a vector, indicating that the resulting object should be a DataFrame. On the other hand, :A is a single symbol, indicating that a single column vector should be extracted. Note that in the first case a vector is required to be passed (not just any iterable), so e.g. df[:, (:x1, :x2)] is not allowed, but df[:, [:x1, :x2]] is valid.

It is also possible to use a regular expression as a selector of columns matching it:

julia> df = DataFrame(x1=1, x2=2, y=3)
1×3 DataFrame
 Row │ x1     x2     y
     │ Int64  Int64  Int64
─────┼─────────────────────
   1 │     1      2      3

julia> df[!, r"x"]
1×2 DataFrame
 Row │ x1     x2
     │ Int64  Int64
─────┼──────────────
   1 │     1      2

A Not selector (from the InvertedIndices package) can be used to select all columns excluding a specific subset:

julia> df[!, Not(:x1)]
1×2 DataFrame
 Row │ x2     y
     │ Int64  Int64
─────┼──────────────
   1 │     2      3

Finally, you can use Not, Between, Cols and All selectors in more complex column selection scenarios (note that Cols() selects no columns while All() selects all columns therefore Cols is a preferred selector if you write generic code). Here are examples of using each of these selectors:

julia> df = DataFrame(r=1, x1=2, x2=3, y=4)
1×4 DataFrame
 Row │ r      x1     x2     y
     │ Int64  Int64  Int64  Int64
─────┼────────────────────────────
   1 │     1      2      3      4

julia> df[:, Not(:r)] # drop :r column
1×3 DataFrame
 Row │ x1     x2     y
     │ Int64  Int64  Int64
─────┼─────────────────────
   1 │     2      3      4

julia> df[:, Between(:r, :x2)] # keep columns between :r and :x2
1×3 DataFrame
 Row │ r      x1     x2
     │ Int64  Int64  Int64
─────┼─────────────────────
   1 │     1      2      3

julia> df[:, All()] # keep all columns
1×4 DataFrame
 Row │ r      x1     x2     y
     │ Int64  Int64  Int64  Int64
─────┼────────────────────────────
   1 │     1      2      3      4

julia> df[:, Cols(x -> startswith(x, "x"))] # keep columns whose name starts with "x"
1×2 DataFrame
 Row │ x1     x2
     │ Int64  Int64
─────┼──────────────
   1 │     2      3

The following examples show a more complex use of the Cols selector, which moves all columns whose names match r"x" regular expression respectively to the front and to the end of the data frame:

julia> df[:, Cols(r"x", :)]
1×4 DataFrame
 Row │ x1     x2     r      y
     │ Int64  Int64  Int64  Int64
─────┼────────────────────────────
   1 │     2      3      1      4

julia> df[:, Cols(Not(r"x"), :)]
1×4 DataFrame
 Row │ r      y      x1     x2
     │ Int64  Int64  Int64  Int64
─────┼────────────────────────────
   1 │     1      4      2      3

The indexing syntax can also be used to select rows based on conditions on variables:

julia> df = DataFrame(A=1:2:1000, B=repeat(1:10, inner=50), C=1:500)
500×3 DataFrame
 Row │ A      B      C
     │ Int64  Int64  Int64
─────┼─────────────────────
   1 │     1      1      1
   2 │     3      1      2
   3 │     5      1      3
   4 │     7      1      4
   5 │     9      1      5
   6 │    11      1      6
   7 │    13      1      7
   8 │    15      1      8
  ⋮  │   ⋮      ⋮      ⋮
 494 │   987     10    494
 495 │   989     10    495
 496 │   991     10    496
 497 │   993     10    497
 498 │   995     10    498
 499 │   997     10    499
 500 │   999     10    500
           485 rows omitted

julia> df[df.A .> 500, :]
250×3 DataFrame
 Row │ A      B      C
     │ Int64  Int64  Int64
─────┼─────────────────────
   1 │   501      6    251
   2 │   503      6    252
   3 │   505      6    253
   4 │   507      6    254
   5 │   509      6    255
   6 │   511      6    256
   7 │   513      6    257
   8 │   515      6    258
  ⋮  │   ⋮      ⋮      ⋮
 244 │   987     10    494
 245 │   989     10    495
 246 │   991     10    496
 247 │   993     10    497
 248 │   995     10    498
 249 │   997     10    499
 250 │   999     10    500
           235 rows omitted

julia> df[(df.A .> 500) .& (300 .< df.C .< 400), :]
99×3 DataFrame
 Row │ A      B      C
     │ Int64  Int64  Int64
─────┼─────────────────────
   1 │   601      7    301
   2 │   603      7    302
   3 │   605      7    303
   4 │   607      7    304
   5 │   609      7    305
   6 │   611      7    306
   7 │   613      7    307
   8 │   615      7    308
  ⋮  │   ⋮      ⋮      ⋮
  93 │   785      8    393
  94 │   787      8    394
  95 │   789      8    395
  96 │   791      8    396
  97 │   793      8    397
  98 │   795      8    398
  99 │   797      8    399
            84 rows omitted

Where a specific subset of values needs to be matched, the in() function can be applied:

julia> df[in.(df.A, Ref([1, 5, 601])), :]
3×3 DataFrame
 Row │ A      B      C
     │ Int64  Int64  Int64
─────┼─────────────────────
   1 │     1      1      1
   2 │     5      1      3
   3 │   601      7    301

The Ref wrapper to [1, 5, 601] is needed to protect the vector against being broadcasted over (the vector will be treated as a scalar when wrapped in Ref). You could write this operation using a comprehension like this (note that it would be slower so it is not recommended): [a in [1, 5, 601] for a in df.A].

Equivalently, the in function can be called with a single argument to create a function object that tests whether each value belongs to the subset (partial application of in): df[in([1, 5, 601]).(df.A), :].

!!! note

As with matrices, subsetting from a data frame will usually return a copy of
columns, not a view or direct reference.

The only indexing situations where data frames will **not** return a copy are:

- when a `!` is placed in the first indexing position
  (`df[!, :A]`, or `df[!, [:A, :B]]`),
- when using `.` (`getpropery`) notation (`df.A`),
- when a single row is selected using an integer (`df[1, [:A, :B]]`)
- when `view` or `@view` is used (e.g. `@view df[1:3, :A]`).

More details on copies, views, and references can be found
in the [`getindex` and `view`](@ref) section.

Subsetting functions

An alternative approach to row subsetting in a data frame is to use the subset function, or the subset! function, which is its in-place variant.

These functions take a data frame as their first argument. The following positional arguments (one or more) are filtering condition specifications that must be jointly met. Each condition should be passed as a Pair consisting of source column(s) and a function specifying the filtering condition taking this or these column(s) as arguments:

julia> subset(df, :A => a -> a .< 10, :C => c -> isodd.(c))
3×3 DataFrame
 Row │ A      B      C
     │ Int64  Int64  Int64
─────┼─────────────────────
   1 │     1      1      1
   2 │     5      1      3
   3 │     9      1      5

It is a frequent situation that missing values might be present in the filtering columns, which could then lead the filtering condition to return missing instead of the expected true or false. In order to handle this situation one can either use the coalesce function or pass the skipmissing=true keyword argument to subset. Here is an example:

julia> df = DataFrame(x=[1, 2, missing, 4])
4×1 DataFrame
 Row │ x
     │ Int64?
─────┼─────────
   1 │       1
   2 │       2
   3 │ missing
   4 │       4

julia> subset(df, :x => x -> coalesce.(iseven.(x), false))
2×1 DataFrame
 Row │ x
     │ Int64?
─────┼────────
   1 │      2
   2 │      4

julia> subset(df, :x => x -> iseven.(x), skipmissing=true)
2×1 DataFrame
 Row │ x
     │ Int64?
─────┼────────
   1 │      2
   2 │      4

The subset function has been designed in a way that is consistent with how column transformations are specified in functions like combine, select, and transform. Examples of column transformations accepted by these functions are provided in the following section.

Additionally DataFrames.jl extends the filter and filter! functions provided in Julia Base, which also allow subsetting a data frame. These methods are defined so that DataFrames.jl implements the Julia API for collections, but it is generally recommended to use the subset and subset! functions instead, as they are consistent with other DataFrames.jl functions (as opposed to filter and filter!).

Selecting and transforming columns

You can also use the select/select! and transform/transform! functions to select, rename and transform columns in a data frame.

The select function creates a new data frame:

julia> df = DataFrame(x1=[1, 2], x2=[3, 4], y=[5, 6])
2×3 DataFrame
 Row │ x1     x2     y
     │ Int64  Int64  Int64
─────┼─────────────────────
   1 │     1      3      5
   2 │     2      4      6

julia> select(df, Not(:x1)) # drop column :x1 in a new data frame
2×2 DataFrame
 Row │ x2     y
     │ Int64  Int64
─────┼──────────────
   1 │     3      5
   2 │     4      6

julia> select(df, r"x") # select columns containing 'x' character
2×2 DataFrame
 Row │ x1     x2
     │ Int64  Int64
─────┼──────────────
   1 │     1      3
   2 │     2      4

julia> select(df, :x1 => :a1, :x2 => :a2) # rename columns
2×2 DataFrame
 Row │ a1     a2
     │ Int64  Int64
─────┼──────────────
   1 │     1      3
   2 │     2      4

julia> select(df, :x1, :x2 => (x -> x .- minimum(x)) => :x2) # transform columns
2×2 DataFrame
 Row │ x1     x2
     │ Int64  Int64
─────┼──────────────
   1 │     1      0
   2 │     2      1

julia> select(df, :x2, :x2 => ByRow(sqrt)) # transform columns by row
2×2 DataFrame
 Row │ x2     x2_sqrt
     │ Int64  Float64
─────┼────────────────
   1 │     3  1.73205
   2 │     4  2.0

julia> select(df, :x1, :x2, [:x1, :x2] => ((x1, x2) -> x1 ./ x2) => :z) # transform multiple columns
2×3 DataFrame
 Row │ x1     x2     z
     │ Int64  Int64  Float64
─────┼────────────────────────
   1 │     1      3  0.333333
   2 │     2      4  0.5

julia> select(df, :x1, :x2, [:x1, :x2] => ByRow((x1, x2) -> x1 / x2) => :z)  # transform multiple columns by row
2×3 DataFrame
 Row │ x1     x2     z
     │ Int64  Int64  Float64
─────┼────────────────────────
   1 │     1      3  0.333333
   2 │     2      4  0.5

julia> select(df, AsTable(:) => ByRow(extrema) => [:lo, :hi]) # return multiple columns
2×2 DataFrame
 Row │ lo     hi
     │ Int64  Int64
─────┼──────────────
   1 │     1      5
   2 │     2      6

It is important to note that select always returns a data frame, even if a single column is selected (as opposed to indexing syntax).

julia> select(df, :x1)
2×1 DataFrame
 Row │ x1
     │ Int64
─────┼───────
   1 │     1
   2 │     2

julia> df[:, :x1]
2-element Vector{Int64}:
 1
 2

By default select copies columns of a passed source data frame. In order to avoid copying, pass copycols=false:

julia> df2 = select(df, :x1)
2×1 DataFrame
 Row │ x1
     │ Int64
─────┼───────
   1 │     1
   2 │     2

julia> df2.x1 === df.x1
false

julia> df2 = select(df, :x1, copycols=false)
2×1 DataFrame
 Row │ x1
     │ Int64
─────┼───────
   1 │     1
   2 │     2

julia> df2.x1 === df.x1
true

To perform the selection operation in-place use select!:

julia> select!(df, Not(:x1));

julia> df
2×2 DataFrame
 Row │ x2     y
     │ Int64  Int64
─────┼──────────────
   1 │     3      5
   2 │     4      6

transform and transform! functions work identically to select and select!, with the only difference that they retain all columns that are present in the source data frame. Here are some more advanced examples.

First we show how to generate a column that is a sum of all other columns in the data frame using the All() selector:

julia> df = DataFrame(x1=[1, 2], x2=[3, 4], y=[5, 6])
2×3 DataFrame
 Row │ x1     x2     y
     │ Int64  Int64  Int64
─────┼─────────────────────
   1 │     1      3      5
   2 │     2      4      6

julia> transform(df, All() => +)
2×4 DataFrame
 Row │ x1     x2     y      x1_x2_y_+
     │ Int64  Int64  Int64  Int64
─────┼────────────────────────────────
   1 │     1      3      5          9
   2 │     2      4      6         12

Using the ByRow wrapper, we can easily compute for each row the name of column with the highest score:

julia> using Random

julia> Random.seed!(1);

julia> df = DataFrame(rand(10, 3), [:a, :b, :c])
10×3 DataFrame
 Row │ a           b          c
     │ Float64     Float64    Float64
─────┼──────────────────────────────────
   1 │ 0.236033    0.555751   0.0769509
   2 │ 0.346517    0.437108   0.640396
   3 │ 0.312707    0.424718   0.873544
   4 │ 0.00790928  0.773223   0.278582
   5 │ 0.488613    0.28119    0.751313
   6 │ 0.210968    0.209472   0.644883
   7 │ 0.951916    0.251379   0.0778264
   8 │ 0.999905    0.0203749  0.848185
   9 │ 0.251662    0.287702   0.0856352
  10 │ 0.986666    0.859512   0.553206

julia> transform(df, AsTable(:) => ByRow(argmax) => :prediction)
10×4 DataFrame
 Row │ a           b          c          prediction
     │ Float64     Float64    Float64    Symbol
─────┼──────────────────────────────────────────────
   1 │ 0.236033    0.555751   0.0769509  b
   2 │ 0.346517    0.437108   0.640396   c
   3 │ 0.312707    0.424718   0.873544   c
   4 │ 0.00790928  0.773223   0.278582   b
   5 │ 0.488613    0.28119    0.751313   c
   6 │ 0.210968    0.209472   0.644883   c
   7 │ 0.951916    0.251379   0.0778264  a
   8 │ 0.999905    0.0203749  0.848185   a
   9 │ 0.251662    0.287702   0.0856352  b
  10 │ 0.986666    0.859512   0.553206   a

In the most complex example below we compute row-wise sum, number of elements, and mean, while ignoring missing values.

julia> using Statistics

julia> df = DataFrame(x=[1, 2, missing], y=[1, missing, missing])
3×2 DataFrame
 Row │ x        y
     │ Int64?   Int64?
─────┼──────────────────
   1 │       1        1
   2 │       2  missing
   3 │ missing  missing

julia> transform(df, AsTable(:) .=>
                     ByRow.([sum∘skipmissing,
                             x -> count(!ismissing, x),
                             mean∘skipmissing]) .=>
                     [:sum, :n, :mean])
3×5 DataFrame
 Row │ x        y        sum    n      mean
     │ Int64?   Int64?   Int64  Int64  Float64
─────┼─────────────────────────────────────────
   1 │       1        1      2      2      1.0
   2 │       2  missing      2      1      2.0
   3 │ missing  missing      0      0    NaN

While the DataFrames.jl package provides basic data manipulation capabilities, users are encouraged to use querying frameworks for more convenient and powerful operations:

  • the Query.jl package provides a LINQ-like interface to a large number of data sources
  • the DataFramesMeta.jl package provides interfaces similar to LINQ and dplyr
  • the DataFrameMacros.jl package provides macros for most standard functions from DataFrames.jl, with convenient syntax for the manipulation of multiple columns at once.

See the Data manipulation frameworks section for more information.

Summarizing Data

The describe function returns a data frame summarizing the elementary statistics and information about each column:

julia> df = DataFrame(A=1:4, B=["M", "F", "F", "M"])
4×2 DataFrame
 Row │ A      B
     │ Int64  String
─────┼───────────────
   1 │     1  M
   2 │     2  F
   3 │     3  F
   4 │     4  M

julia> describe(df)
2×7 DataFrame
 Row │ variable  mean    min  median  max  nmissing  eltype
     │ Symbol    Union…  Any  Union…  Any  Int64     DataType
─────┼────────────────────────────────────────────────────────
   1 │ A         2.5     1    2.5     4           0  Int64
   2 │ B                 F            M           0  String

If you are interested in describing only a subset of columns, then the easiest way to do it is to pass a subset of an original data frame to describe like this:

julia> describe(df[!, [:A]])
1×7 DataFrame
 Row │ variable  mean     min    median   max    nmissing  eltype
     │ Symbol    Float64  Int64  Float64  Int64  Int64     DataType
─────┼──────────────────────────────────────────────────────────────
   1 │ A             2.5      1      2.5      4         0  Int64

Of course, one can also compute descriptive statistics directly on individual columns:

julia> using Statistics

julia> mean(df.A)
2.5

We can also apply a function to each column of a DataFrame using combine. For example:

julia> df = DataFrame(A=1:4, B=4.0:-1.0:1.0)
4×2 DataFrame
 Row │ A      B
     │ Int64  Float64
─────┼────────────────
   1 │     1      4.0
   2 │     2      3.0
   3 │     3      2.0
   4 │     4      1.0

julia> combine(df, All() .=> sum)
1×2 DataFrame
 Row │ A_sum  B_sum
     │ Int64  Float64
─────┼────────────────
   1 │    10     10.0

julia> combine(df, All() .=> sum, All() .=> prod)
1×4 DataFrame
 Row │ A_sum  B_sum    A_prod  B_prod
     │ Int64  Float64  Int64   Float64
─────┼─────────────────────────────────
   1 │    10     10.0      24     24.0

julia> combine(df, All() .=> [sum prod]) # the same using 2-dimensional broadcasting
1×4 DataFrame
 Row │ A_sum  B_sum    A_prod  B_prod
     │ Int64  Float64  Int64   Float64
─────┼─────────────────────────────────
   1 │    10     10.0      24     24.0

If you would prefer the result to have the same number of rows as the source data frame, use select instead of combine.

In the remainder of this section we will discuss more advanced topics related to the operation specification syntax, so you may decide to skip them if you want to focus on the most common usage patterns.

A DataFrame can store values of any type as its columns, for example below we show how one can store a Tuple:

julia> df2 = combine(df, All() .=> extrema)
1×2 DataFrame
 Row │ A_extrema  B_extrema
     │ Tuple…     Tuple…
─────┼───────────────────────
   1 │ (1, 4)     (1.0, 4.0)

Later you might want to expand the tuples into separate columns storing the computed minima and maxima. This can be achieved by passing multiple columns for the output. Here is an example of how this can be done by writing the column names by-hand for a single input column:

julia> combine(df2, "A_extrema" => identity => ["A_min", "A_max"])
1×2 DataFrame
 Row │ A_min  A_max
     │ Int64  Int64
─────┼──────────────
   1 │     1      4

You can extend it to handling all columns in df2 using broadcasting:

julia> combine(df2, All() .=> identity .=> [["A_min", "A_max"], ["B_min", "B_max"]])
1×4 DataFrame
 Row │ A_min  A_max  B_min    B_max
     │ Int64  Int64  Float64  Float64
─────┼────────────────────────────────
   1 │     1      4      1.0      4.0

This approach works, but can be improved. Instead of writing all the column names manually we can instead use a function as a way to specify target column names based on source column names:

julia> combine(df2, All() .=> identity .=> c -> first(c) .* ["_min", "_max"])
1×4 DataFrame
 Row │ A_min  A_max  B_min    B_max
     │ Int64  Int64  Float64  Float64
─────┼────────────────────────────────
   1 │     1      4      1.0      4.0

Note that in this example we needed to pass identity explicitly since with All() => (c -> first(c) .* ["_min", "_max"]) the right-hand side part would be treated as a transformation and not as a rule for target column names generation.

You might want to perform the transformation of the source data frame into the result we have just shown in one step. This can be achieved with the following expression:

julia> combine(df, All() .=> Ref∘extrema .=> c -> c .* ["_min", "_max"])
1×4 DataFrame
 Row │ A_min  A_max  B_min    B_max
     │ Int64  Int64  Float64  Float64
─────┼────────────────────────────────
   1 │     1      4      1.0      4.0

Note that in this case we needed to add a Ref call in the Ref∘extrema operation specification. Without Ref, combine iterates the contents of the value returned by the operation specification function, which in our case is a tuple of numbers, and tries to expand it assuming that each produced value represents one row, so one gets an error:

julia> combine(df, All() .=> extrema .=> [c -> c .* ["_min", "_max"]])
ERROR: ArgumentError: 'Tuple{Int64, Int64}' iterates 'Int64' values,
which doesn't satisfy the Tables.jl `AbstractRow` interface

Note that we used Ref as it is a container that is typically used in DataFrames.jl when one wants to store one row, however, in general it could be another iterator (e.g. a tuple).

Handling of Columns Stored in a DataFrame

Functions that transform a DataFrame to produce a new DataFrame always perform a copy of the columns by default, for example:

julia> df = DataFrame(A=1:4, B=4.0:-1.0:1.0)
4×2 DataFrame
 Row │ A      B
     │ Int64  Float64
─────┼────────────────
   1 │     1      4.0
   2 │     2      3.0
   3 │     3      2.0
   4 │     4      1.0

julia> df2 = copy(df);

julia> df2.A === df.A
false

On the other hand, in-place functions, whose names end with !, may mutate the column vectors of the DataFrame they take as an argument. For example:

julia> x = [3, 1, 2];

julia> df = DataFrame(x=x)
3×1 DataFrame
 Row │ x
     │ Int64
─────┼───────
   1 │     3
   2 │     1
   3 │     2

julia> sort!(df)
3×1 DataFrame
 Row │ x
     │ Int64
─────┼───────
   1 │     1
   2 │     2
   3 │     3

julia> x
3-element Vector{Int64}:
 3
 1
 2

julia> df.x[1] = 100
100

julia> df
3×1 DataFrame
 Row │ x
     │ Int64
─────┼───────
   1 │   100
   2 │     2
   3 │     3

julia> x
3-element Vector{Int64}:
 3
 1
 2

Note that in the above example the original x vector is not mutated in the process, as the DataFrame(x=x) constructor makes a copy by default.

In-place functions are safe to call, except when a view of the DataFrame (created via a view, @view or groupby) or when a DataFrame created with copycols=false are in use.

It is possible to have a direct access to a column col of a DataFrame df using the syntaxes df.col, df[!, :col], via the eachcol function, by accessing a parent of a view of a column of a DataFrame, or simply by storing the reference to the column vector before the DataFrame was created with copycols=false.

julia> x = [3, 1, 2];

julia> df = DataFrame(x=x)
3×1 DataFrame
 Row │ x
     │ Int64
─────┼───────
   1 │     3
   2 │     1
   3 │     2

julia> df.x == x
true

julia> df[!, 1] !== x
true

julia> eachcol(df)[1] === df.x
true

Note that a column obtained from a DataFrame using one of these methods should not be mutated without caution.

The exact rules of handling columns of a DataFrame are explained in [The design of handling of columns of a DataFrame](@ref man-columnhandling) section of the manual.

Replacing Data

Several approaches can be used to replace some values with others in a data frame. Some apply the replacement to all values in a data frame, and others to individual columns or subset of columns.

Do note that in-place replacement requires that the replacement value can be converted to the column's element type. In particular, this implies that replacing a value with missing requires a call to allowmissing! if the column did not allow for missing values.

Replacement operations affecting a single column can be performed using replace!:

julia> using DataFrames

julia> df = DataFrame(a=["a", "None", "b", "None"], b=1:4,
                      c=["None", "j", "k", "h"], d=["x", "y", "None", "z"])
4×4 DataFrame
 Row │ a       b      c       d
     │ String  Int64  String  String
─────┼───────────────────────────────
   1 │ a           1  None    x
   2 │ None        2  j       y
   3 │ b           3  k       None
   4 │ None        4  h       z

julia> replace!(df.a, "None" => "c")
4-element Vector{String}:
 "a"
 "c"
 "b"
 "c"

julia> df
4×4 DataFrame
 Row │ a       b      c       d
     │ String  Int64  String  String
─────┼───────────────────────────────
   1 │ a           1  None    x
   2 │ c           2  j       y
   3 │ b           3  k       None
   4 │ c           4  h       z

This is equivalent to df.a = replace(df.a, "None" => "c"), but operates in-place, without allocating a new column vector.

Replacement operations on multiple columns or on the whole data frame can be performed in-place using the broadcasting syntax:

# replacement on a subset of columns [:c, :d]
julia> df[:, [:c, :d]] .= ifelse.(df[!, [:c, :d]] .== "None", "c", df[!, [:c, :d]])
4×2 SubDataFrame
 Row │ c       d
     │ String  String
─────┼────────────────
   1 │ c       x
   2 │ j       y
   3 │ k       c
   4 │ h       z

julia> df
4×4 DataFrame
 Row │ a       b      c       d
     │ String  Int64  String  String
─────┼───────────────────────────────
   1 │ a           1  c       x
   2 │ c           2  j       y
   3 │ b           3  k       c
   4 │ c           4  h       z

julia> df .= ifelse.(df .== "c", "None", df) # replacement on entire data frame
4×4 DataFrame
 Row │ a       b      c       d
     │ String  Int64  String  String
─────┼───────────────────────────────
   1 │ a           1  None    x
   2 │ None        2  j       y
   3 │ b           3  k       None
   4 │ None        4  h       z

Do note that in the above examples, changing .= to just = will allocate new column vectors instead of applying the operation in-place.

When replacing values with missing, if the columns do not already allow for missing values, one has to either avoid in-place operation and use = instead of .=, or call allowmissing! beforehand:

julia> df2 = ifelse.(df .== "None", missing, df) # do not operate in-place (`df = ` would also work)
4×4 DataFrame
 Row │ a        b      c        d
     │ String?  Int64  String?  String?
─────┼──────────────────────────────────
   1 │ a            1  missing  x
   2 │ missing      2  j        y
   3 │ b            3  k        missing
   4 │ missing      4  h        z

julia> allowmissing!(df) # operate in-place after allowing for missing
4×4 DataFrame
 Row │ a        b       c        d
     │ String?  Int64?  String?  String?
─────┼───────────────────────────────────
   1 │ a             1  None     x
   2 │ None          2  j        y
   3 │ b             3  k        None
   4 │ None          4  h        z

julia> df .= ifelse.(df .== "None", missing, df)
4×4 DataFrame
 Row │ a        b       c        d
     │ String?  Int64?  String?  String?
─────┼───────────────────────────────────
   1 │ a             1  missing  x
   2 │ missing       2  j        y
   3 │ b             3  k        missing
   4 │ missing       4  h        z