The default printing of DataFrame
objects only includes a sample of rows and
columns that fits on screen:
julia> using DataFrames
julia> df = DataFrame(A=1:2:1000, B=repeat(1:10, inner=50), C=1:500)
500×3 DataFrame
Row │ A B C
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 1 1 1
2 │ 3 1 2
3 │ 5 1 3
4 │ 7 1 4
5 │ 9 1 5
6 │ 11 1 6
7 │ 13 1 7
8 │ 15 1 8
⋮ │ ⋮ ⋮ ⋮
494 │ 987 10 494
495 │ 989 10 495
496 │ 991 10 496
497 │ 993 10 497
498 │ 995 10 498
499 │ 997 10 499
500 │ 999 10 500
485 rows omitted
Printing options can be adjusted by calling the show
function manually:
show(df, allrows=true)
prints all rows even if they do not fit on screen and
show(df, allcols=true)
does the same for columns.
The first
and last
functions can be used to look at the first and last rows
of a data frame (respectively):
julia> first(df, 6)
6×3 DataFrame
Row │ A B C
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 1 1 1
2 │ 3 1 2
3 │ 5 1 3
4 │ 7 1 4
5 │ 9 1 5
6 │ 11 1 6
julia> last(df, 6)
6×3 DataFrame
Row │ A B C
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 989 10 495
2 │ 991 10 496
3 │ 993 10 497
4 │ 995 10 498
5 │ 997 10 499
6 │ 999 10 500
Also notice that when DataFrame
is printed to the console or rendered in HTML
(e.g. in Jupyter Notebook) you get an information about type of elements held in
its columns. For example in this case:
julia> using CategoricalArrays
julia> DataFrame(a=1:2, b=[1.0, missing],
c=categorical('a':'b'), d=[1//2, missing])
2×4 DataFrame
Row │ a b c d
│ Int64 Float64? Cat… Rational…?
─────┼────────────────────────────────────
1 │ 1 1.0 a 1//2
2 │ 2 missing b missing
we can observe that:
- the first column
:a
can hold elements of typeInt64
; - the second column
:b
can holdFloat64
orMissing
, which is indicated by?
printed after the name of type; - the third column
:c
can hold categorical data; here we notice…
, which indicates that the actual name of the type was long and got truncated; - the type information in fourth column
:d
presents a situation where the name is both truncated and the type allowsMissing
.
Specific subsets of a data frame can be extracted using the indexing syntax, similar to matrices. In the Indexing section of the manual you can find all the details about the available options. Here we highlight the basic options.
The colon :
indicates that all items (rows or columns
depending on its position) should be retained:
julia> df[1:3, :]
3×3 DataFrame
Row │ A B C
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 1 1 1
2 │ 3 1 2
3 │ 5 1 3
julia> df[[1, 5, 10], :]
3×3 DataFrame
Row │ A B C
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 1 1 1
2 │ 9 1 5
3 │ 19 1 10
julia> df[:, [:A, :B]]
500×2 DataFrame
Row │ A B
│ Int64 Int64
─────┼──────────────
1 │ 1 1
2 │ 3 1
3 │ 5 1
4 │ 7 1
5 │ 9 1
6 │ 11 1
7 │ 13 1
8 │ 15 1
⋮ │ ⋮ ⋮
494 │ 987 10
495 │ 989 10
496 │ 991 10
497 │ 993 10
498 │ 995 10
499 │ 997 10
500 │ 999 10
485 rows omitted
julia> df[1:3, [:B, :A]]
3×2 DataFrame
Row │ B A
│ Int64 Int64
─────┼──────────────
1 │ 1 1
2 │ 1 3
3 │ 1 5
julia> df[[3, 1], [:C]]
2×1 DataFrame
Row │ C
│ Int64
─────┼───────
1 │ 3
2 │ 1
Do note that df[!, [:A]]
and df[:, [:A]]
return a DataFrame
object, while
df[!, :A]
and df[:, :A]
return a vector:
julia> df[!, [:A]]
500×1 DataFrame
Row │ A
│ Int64
─────┼───────
1 │ 1
2 │ 3
3 │ 5
4 │ 7
5 │ 9
6 │ 11
7 │ 13
8 │ 15
⋮ │ ⋮
494 │ 987
495 │ 989
496 │ 991
497 │ 993
498 │ 995
499 │ 997
500 │ 999
485 rows omitted
julia> df[!, [:A]] == df[:, [:A]]
true
julia> df[!, :A]
500-element Vector{Int64}:
1
3
5
7
9
11
13
15
17
19
⋮
983
985
987
989
991
993
995
997
999
julia> df[!, :A] == df[:, :A]
true
In the first case, [:A]
is a vector, indicating that the resulting object
should be a DataFrame
. On the other hand, :A
is a single symbol, indicating
that a single column vector should be extracted. Note that in the first case a
vector is required to be passed (not just any iterable), so e.g. df[:, (:x1, :x2)]
is not allowed, but df[:, [:x1, :x2]]
is valid.
It is also possible to use a regular expression as a selector of columns matching it:
julia> df = DataFrame(x1=1, x2=2, y=3)
1×3 DataFrame
Row │ x1 x2 y
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 1 2 3
julia> df[!, r"x"]
1×2 DataFrame
Row │ x1 x2
│ Int64 Int64
─────┼──────────────
1 │ 1 2
A Not
selector (from the
InvertedIndices package) can be
used to select all columns excluding a specific subset:
julia> df[!, Not(:x1)]
1×2 DataFrame
Row │ x2 y
│ Int64 Int64
─────┼──────────────
1 │ 2 3
Finally, you can use Not
, Between
, Cols
and All
selectors in more
complex column selection scenarios (note that Cols()
selects no columns while
All()
selects all columns therefore Cols
is a preferred selector if you
write generic code). Here are examples of using each of these selectors:
julia> df = DataFrame(r=1, x1=2, x2=3, y=4)
1×4 DataFrame
Row │ r x1 x2 y
│ Int64 Int64 Int64 Int64
─────┼────────────────────────────
1 │ 1 2 3 4
julia> df[:, Not(:r)] # drop :r column
1×3 DataFrame
Row │ x1 x2 y
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 2 3 4
julia> df[:, Between(:r, :x2)] # keep columns between :r and :x2
1×3 DataFrame
Row │ r x1 x2
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 1 2 3
julia> df[:, All()] # keep all columns
1×4 DataFrame
Row │ r x1 x2 y
│ Int64 Int64 Int64 Int64
─────┼────────────────────────────
1 │ 1 2 3 4
julia> df[:, Cols(x -> startswith(x, "x"))] # keep columns whose name starts with "x"
1×2 DataFrame
Row │ x1 x2
│ Int64 Int64
─────┼──────────────
1 │ 2 3
The following examples show a more complex use of the Cols
selector, which
moves all columns whose names match r"x"
regular expression respectively to
the front and to the end of the data frame:
julia> df[:, Cols(r"x", :)]
1×4 DataFrame
Row │ x1 x2 r y
│ Int64 Int64 Int64 Int64
─────┼────────────────────────────
1 │ 2 3 1 4
julia> df[:, Cols(Not(r"x"), :)]
1×4 DataFrame
Row │ r y x1 x2
│ Int64 Int64 Int64 Int64
─────┼────────────────────────────
1 │ 1 4 2 3
The indexing syntax can also be used to select rows based on conditions on variables:
julia> df = DataFrame(A=1:2:1000, B=repeat(1:10, inner=50), C=1:500)
500×3 DataFrame
Row │ A B C
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 1 1 1
2 │ 3 1 2
3 │ 5 1 3
4 │ 7 1 4
5 │ 9 1 5
6 │ 11 1 6
7 │ 13 1 7
8 │ 15 1 8
⋮ │ ⋮ ⋮ ⋮
494 │ 987 10 494
495 │ 989 10 495
496 │ 991 10 496
497 │ 993 10 497
498 │ 995 10 498
499 │ 997 10 499
500 │ 999 10 500
485 rows omitted
julia> df[df.A .> 500, :]
250×3 DataFrame
Row │ A B C
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 501 6 251
2 │ 503 6 252
3 │ 505 6 253
4 │ 507 6 254
5 │ 509 6 255
6 │ 511 6 256
7 │ 513 6 257
8 │ 515 6 258
⋮ │ ⋮ ⋮ ⋮
244 │ 987 10 494
245 │ 989 10 495
246 │ 991 10 496
247 │ 993 10 497
248 │ 995 10 498
249 │ 997 10 499
250 │ 999 10 500
235 rows omitted
julia> df[(df.A .> 500) .& (300 .< df.C .< 400), :]
99×3 DataFrame
Row │ A B C
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 601 7 301
2 │ 603 7 302
3 │ 605 7 303
4 │ 607 7 304
5 │ 609 7 305
6 │ 611 7 306
7 │ 613 7 307
8 │ 615 7 308
⋮ │ ⋮ ⋮ ⋮
93 │ 785 8 393
94 │ 787 8 394
95 │ 789 8 395
96 │ 791 8 396
97 │ 793 8 397
98 │ 795 8 398
99 │ 797 8 399
84 rows omitted
Where a specific subset of values needs to be matched, the in()
function can
be applied:
julia> df[in.(df.A, Ref([1, 5, 601])), :]
3×3 DataFrame
Row │ A B C
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 1 1 1
2 │ 5 1 3
3 │ 601 7 301
The Ref
wrapper to [1, 5, 601]
is needed to protect the vector against being
broadcasted over (the vector will be treated as a scalar when wrapped in Ref
).
You could write this operation using a comprehension like this (note that it would be slower
so it is not recommended):
[a in [1, 5, 601] for a in df.A]
.
Equivalently, the in
function can be called with a single argument to create
a function object that tests whether each value belongs to the subset
(partial application of in
): df[in([1, 5, 601]).(df.A), :]
.
!!! note
As with matrices, subsetting from a data frame will usually return a copy of
columns, not a view or direct reference.
The only indexing situations where data frames will **not** return a copy are:
- when a `!` is placed in the first indexing position
(`df[!, :A]`, or `df[!, [:A, :B]]`),
- when using `.` (`getpropery`) notation (`df.A`),
- when a single row is selected using an integer (`df[1, [:A, :B]]`)
- when `view` or `@view` is used (e.g. `@view df[1:3, :A]`).
More details on copies, views, and references can be found
in the [`getindex` and `view`](@ref) section.
An alternative approach to row subsetting in a data frame is to use
the subset
function, or the subset!
function,
which is its in-place variant.
These functions take a data frame as their first argument. The
following positional arguments (one or more) are filtering condition
specifications that must be jointly met. Each condition should be passed as a
Pair
consisting of source column(s) and a function specifying the filtering
condition taking this or these column(s) as arguments:
julia> subset(df, :A => a -> a .< 10, :C => c -> isodd.(c))
3×3 DataFrame
Row │ A B C
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 1 1 1
2 │ 5 1 3
3 │ 9 1 5
It is a frequent situation that missing
values might be present in the
filtering columns, which could then lead the filtering condition to return
missing
instead of the expected true
or false
. In order
to handle this situation one can either use the coalesce
function or pass
the skipmissing=true
keyword argument to subset
. Here is an example:
julia> df = DataFrame(x=[1, 2, missing, 4])
4×1 DataFrame
Row │ x
│ Int64?
─────┼─────────
1 │ 1
2 │ 2
3 │ missing
4 │ 4
julia> subset(df, :x => x -> coalesce.(iseven.(x), false))
2×1 DataFrame
Row │ x
│ Int64?
─────┼────────
1 │ 2
2 │ 4
julia> subset(df, :x => x -> iseven.(x), skipmissing=true)
2×1 DataFrame
Row │ x
│ Int64?
─────┼────────
1 │ 2
2 │ 4
The subset
function has been designed in a way that is
consistent with how column transformations are specified in functions like
combine
, select
, and transform
. Examples of column
transformations accepted by these functions are provided in the following
section.
Additionally DataFrames.jl extends the filter
and filter!
functions provided in Julia Base, which also allow subsetting a data frame.
These methods are defined so that DataFrames.jl implements the Julia API
for collections, but it is generally recommended to use the subset
and subset!
functions instead, as they are consistent with other
DataFrames.jl functions (as opposed to filter
and filter!
).
You can also use the select
/select!
and
transform
/transform!
functions to select, rename and
transform columns in a data frame.
The select
function creates a new data frame:
julia> df = DataFrame(x1=[1, 2], x2=[3, 4], y=[5, 6])
2×3 DataFrame
Row │ x1 x2 y
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 1 3 5
2 │ 2 4 6
julia> select(df, Not(:x1)) # drop column :x1 in a new data frame
2×2 DataFrame
Row │ x2 y
│ Int64 Int64
─────┼──────────────
1 │ 3 5
2 │ 4 6
julia> select(df, r"x") # select columns containing 'x' character
2×2 DataFrame
Row │ x1 x2
│ Int64 Int64
─────┼──────────────
1 │ 1 3
2 │ 2 4
julia> select(df, :x1 => :a1, :x2 => :a2) # rename columns
2×2 DataFrame
Row │ a1 a2
│ Int64 Int64
─────┼──────────────
1 │ 1 3
2 │ 2 4
julia> select(df, :x1, :x2 => (x -> x .- minimum(x)) => :x2) # transform columns
2×2 DataFrame
Row │ x1 x2
│ Int64 Int64
─────┼──────────────
1 │ 1 0
2 │ 2 1
julia> select(df, :x2, :x2 => ByRow(sqrt)) # transform columns by row
2×2 DataFrame
Row │ x2 x2_sqrt
│ Int64 Float64
─────┼────────────────
1 │ 3 1.73205
2 │ 4 2.0
julia> select(df, :x1, :x2, [:x1, :x2] => ((x1, x2) -> x1 ./ x2) => :z) # transform multiple columns
2×3 DataFrame
Row │ x1 x2 z
│ Int64 Int64 Float64
─────┼────────────────────────
1 │ 1 3 0.333333
2 │ 2 4 0.5
julia> select(df, :x1, :x2, [:x1, :x2] => ByRow((x1, x2) -> x1 / x2) => :z) # transform multiple columns by row
2×3 DataFrame
Row │ x1 x2 z
│ Int64 Int64 Float64
─────┼────────────────────────
1 │ 1 3 0.333333
2 │ 2 4 0.5
julia> select(df, AsTable(:) => ByRow(extrema) => [:lo, :hi]) # return multiple columns
2×2 DataFrame
Row │ lo hi
│ Int64 Int64
─────┼──────────────
1 │ 1 5
2 │ 2 6
It is important to note that select
always returns a data frame,
even if a single column is selected (as opposed to indexing syntax).
julia> select(df, :x1)
2×1 DataFrame
Row │ x1
│ Int64
─────┼───────
1 │ 1
2 │ 2
julia> df[:, :x1]
2-element Vector{Int64}:
1
2
By default select
copies columns of a passed source data frame.
In order to avoid copying, pass copycols=false
:
julia> df2 = select(df, :x1)
2×1 DataFrame
Row │ x1
│ Int64
─────┼───────
1 │ 1
2 │ 2
julia> df2.x1 === df.x1
false
julia> df2 = select(df, :x1, copycols=false)
2×1 DataFrame
Row │ x1
│ Int64
─────┼───────
1 │ 1
2 │ 2
julia> df2.x1 === df.x1
true
To perform the selection operation in-place use select!
:
julia> select!(df, Not(:x1));
julia> df
2×2 DataFrame
Row │ x2 y
│ Int64 Int64
─────┼──────────────
1 │ 3 5
2 │ 4 6
transform
and transform!
functions work identically to select
and
select!
, with the only difference that they retain all columns that are present
in the source data frame. Here are some more advanced examples.
First we show how to generate a column that is a sum of all other columns in the
data frame using the All()
selector:
julia> df = DataFrame(x1=[1, 2], x2=[3, 4], y=[5, 6])
2×3 DataFrame
Row │ x1 x2 y
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 1 3 5
2 │ 2 4 6
julia> transform(df, All() => +)
2×4 DataFrame
Row │ x1 x2 y x1_x2_y_+
│ Int64 Int64 Int64 Int64
─────┼────────────────────────────────
1 │ 1 3 5 9
2 │ 2 4 6 12
Using the ByRow
wrapper, we can easily compute for each row the name of column
with the highest score:
julia> using Random
julia> Random.seed!(1);
julia> df = DataFrame(rand(10, 3), [:a, :b, :c])
10×3 DataFrame
Row │ a b c
│ Float64 Float64 Float64
─────┼──────────────────────────────────
1 │ 0.236033 0.555751 0.0769509
2 │ 0.346517 0.437108 0.640396
3 │ 0.312707 0.424718 0.873544
4 │ 0.00790928 0.773223 0.278582
5 │ 0.488613 0.28119 0.751313
6 │ 0.210968 0.209472 0.644883
7 │ 0.951916 0.251379 0.0778264
8 │ 0.999905 0.0203749 0.848185
9 │ 0.251662 0.287702 0.0856352
10 │ 0.986666 0.859512 0.553206
julia> transform(df, AsTable(:) => ByRow(argmax) => :prediction)
10×4 DataFrame
Row │ a b c prediction
│ Float64 Float64 Float64 Symbol
─────┼──────────────────────────────────────────────
1 │ 0.236033 0.555751 0.0769509 b
2 │ 0.346517 0.437108 0.640396 c
3 │ 0.312707 0.424718 0.873544 c
4 │ 0.00790928 0.773223 0.278582 b
5 │ 0.488613 0.28119 0.751313 c
6 │ 0.210968 0.209472 0.644883 c
7 │ 0.951916 0.251379 0.0778264 a
8 │ 0.999905 0.0203749 0.848185 a
9 │ 0.251662 0.287702 0.0856352 b
10 │ 0.986666 0.859512 0.553206 a
In the most complex example below we compute row-wise sum, number of elements, and mean, while ignoring missing values.
julia> using Statistics
julia> df = DataFrame(x=[1, 2, missing], y=[1, missing, missing])
3×2 DataFrame
Row │ x y
│ Int64? Int64?
─────┼──────────────────
1 │ 1 1
2 │ 2 missing
3 │ missing missing
julia> transform(df, AsTable(:) .=>
ByRow.([sum∘skipmissing,
x -> count(!ismissing, x),
mean∘skipmissing]) .=>
[:sum, :n, :mean])
3×5 DataFrame
Row │ x y sum n mean
│ Int64? Int64? Int64 Int64 Float64
─────┼─────────────────────────────────────────
1 │ 1 1 2 2 1.0
2 │ 2 missing 2 1 2.0
3 │ missing missing 0 0 NaN
While the DataFrames.jl package provides basic data manipulation capabilities, users are encouraged to use querying frameworks for more convenient and powerful operations:
- the Query.jl package provides a LINQ-like interface to a large number of data sources
- the DataFramesMeta.jl package provides interfaces similar to LINQ and dplyr
- the DataFrameMacros.jl package provides macros for most standard functions from DataFrames.jl, with convenient syntax for the manipulation of multiple columns at once.
See the Data manipulation frameworks section for more information.
The describe
function returns a data frame summarizing the elementary
statistics and information about each column:
julia> df = DataFrame(A=1:4, B=["M", "F", "F", "M"])
4×2 DataFrame
Row │ A B
│ Int64 String
─────┼───────────────
1 │ 1 M
2 │ 2 F
3 │ 3 F
4 │ 4 M
julia> describe(df)
2×7 DataFrame
Row │ variable mean min median max nmissing eltype
│ Symbol Union… Any Union… Any Int64 DataType
─────┼────────────────────────────────────────────────────────
1 │ A 2.5 1 2.5 4 0 Int64
2 │ B F M 0 String
If you are interested in describing only a subset of columns, then the easiest
way to do it is to pass a subset of an original data frame to describe
like
this:
julia> describe(df[!, [:A]])
1×7 DataFrame
Row │ variable mean min median max nmissing eltype
│ Symbol Float64 Int64 Float64 Int64 Int64 DataType
─────┼──────────────────────────────────────────────────────────────
1 │ A 2.5 1 2.5 4 0 Int64
Of course, one can also compute descriptive statistics directly on individual columns:
julia> using Statistics
julia> mean(df.A)
2.5
We can also apply a function to each column of a DataFrame
using combine
.
For example:
julia> df = DataFrame(A=1:4, B=4.0:-1.0:1.0)
4×2 DataFrame
Row │ A B
│ Int64 Float64
─────┼────────────────
1 │ 1 4.0
2 │ 2 3.0
3 │ 3 2.0
4 │ 4 1.0
julia> combine(df, All() .=> sum)
1×2 DataFrame
Row │ A_sum B_sum
│ Int64 Float64
─────┼────────────────
1 │ 10 10.0
julia> combine(df, All() .=> sum, All() .=> prod)
1×4 DataFrame
Row │ A_sum B_sum A_prod B_prod
│ Int64 Float64 Int64 Float64
─────┼─────────────────────────────────
1 │ 10 10.0 24 24.0
julia> combine(df, All() .=> [sum prod]) # the same using 2-dimensional broadcasting
1×4 DataFrame
Row │ A_sum B_sum A_prod B_prod
│ Int64 Float64 Int64 Float64
─────┼─────────────────────────────────
1 │ 10 10.0 24 24.0
If you would prefer the result to have the same number of rows as the source
data frame, use select
instead of combine
.
In the remainder of this section we will discuss more advanced topics related to the operation specification syntax, so you may decide to skip them if you want to focus on the most common usage patterns.
A DataFrame
can store values of any type as its columns, for example
below we show how one can store a Tuple
:
julia> df2 = combine(df, All() .=> extrema)
1×2 DataFrame
Row │ A_extrema B_extrema
│ Tuple… Tuple…
─────┼───────────────────────
1 │ (1, 4) (1.0, 4.0)
Later you might want to expand the tuples into separate columns storing the computed minima and maxima. This can be achieved by passing multiple columns for the output. Here is an example of how this can be done by writing the column names by-hand for a single input column:
julia> combine(df2, "A_extrema" => identity => ["A_min", "A_max"])
1×2 DataFrame
Row │ A_min A_max
│ Int64 Int64
─────┼──────────────
1 │ 1 4
You can extend it to handling all columns in df2
using broadcasting:
julia> combine(df2, All() .=> identity .=> [["A_min", "A_max"], ["B_min", "B_max"]])
1×4 DataFrame
Row │ A_min A_max B_min B_max
│ Int64 Int64 Float64 Float64
─────┼────────────────────────────────
1 │ 1 4 1.0 4.0
This approach works, but can be improved. Instead of writing all the column names manually we can instead use a function as a way to specify target column names based on source column names:
julia> combine(df2, All() .=> identity .=> c -> first(c) .* ["_min", "_max"])
1×4 DataFrame
Row │ A_min A_max B_min B_max
│ Int64 Int64 Float64 Float64
─────┼────────────────────────────────
1 │ 1 4 1.0 4.0
Note that in this example we needed to pass identity
explicitly since with
All() => (c -> first(c) .* ["_min", "_max"])
the right-hand side part would be
treated as a transformation and not as a rule for target column names generation.
You might want to perform the transformation of the source data frame into the result we have just shown in one step. This can be achieved with the following expression:
julia> combine(df, All() .=> Ref∘extrema .=> c -> c .* ["_min", "_max"])
1×4 DataFrame
Row │ A_min A_max B_min B_max
│ Int64 Int64 Float64 Float64
─────┼────────────────────────────────
1 │ 1 4 1.0 4.0
Note that in this case we needed to add a Ref
call in the Ref∘extrema
operation specification.
Without Ref
, combine
iterates the contents of the value returned by the operation specification function,
which in our case is a tuple of numbers, and tries to expand it assuming that each produced value represents one row,
so one gets an error:
julia> combine(df, All() .=> extrema .=> [c -> c .* ["_min", "_max"]])
ERROR: ArgumentError: 'Tuple{Int64, Int64}' iterates 'Int64' values,
which doesn't satisfy the Tables.jl `AbstractRow` interface
Note that we used Ref
as it is a container that is typically used in DataFrames.jl when one
wants to store one row, however, in general it could be another iterator (e.g. a tuple).
Functions that transform a DataFrame
to produce a
new DataFrame
always perform a copy of the columns by default, for example:
julia> df = DataFrame(A=1:4, B=4.0:-1.0:1.0)
4×2 DataFrame
Row │ A B
│ Int64 Float64
─────┼────────────────
1 │ 1 4.0
2 │ 2 3.0
3 │ 3 2.0
4 │ 4 1.0
julia> df2 = copy(df);
julia> df2.A === df.A
false
On the other hand, in-place functions, whose names end with !
, may mutate the
column vectors of the DataFrame
they take as an argument. For example:
julia> x = [3, 1, 2];
julia> df = DataFrame(x=x)
3×1 DataFrame
Row │ x
│ Int64
─────┼───────
1 │ 3
2 │ 1
3 │ 2
julia> sort!(df)
3×1 DataFrame
Row │ x
│ Int64
─────┼───────
1 │ 1
2 │ 2
3 │ 3
julia> x
3-element Vector{Int64}:
3
1
2
julia> df.x[1] = 100
100
julia> df
3×1 DataFrame
Row │ x
│ Int64
─────┼───────
1 │ 100
2 │ 2
3 │ 3
julia> x
3-element Vector{Int64}:
3
1
2
Note that in the above example the original x
vector is not mutated in the
process, as the DataFrame(x=x)
constructor makes a copy by default.
In-place functions are safe to call, except when a view of the DataFrame
(created via a view
, @view
or groupby
)
or when a DataFrame
created with copycols=false
are in use.
It is possible to have a direct access to a column col
of a DataFrame
df
using the syntaxes df.col
, df[!, :col]
, via the eachcol
function,
by accessing a parent
of a view
of a column of a DataFrame
,
or simply by storing the reference to the column vector before the DataFrame
was created with copycols=false
.
julia> x = [3, 1, 2];
julia> df = DataFrame(x=x)
3×1 DataFrame
Row │ x
│ Int64
─────┼───────
1 │ 3
2 │ 1
3 │ 2
julia> df.x == x
true
julia> df[!, 1] !== x
true
julia> eachcol(df)[1] === df.x
true
Note that a column obtained from a DataFrame
using one of these methods should
not be mutated without caution.
The exact rules of handling columns of a DataFrame
are explained in [The
design of handling of columns of a DataFrame
](@ref man-columnhandling) section
of the manual.
Several approaches can be used to replace some values with others in a data frame. Some apply the replacement to all values in a data frame, and others to individual columns or subset of columns.
Do note that in-place replacement requires that the replacement value can be
converted to the column's element type. In particular, this implies that
replacing a value with missing
requires a call to allowmissing!
if the
column did not allow for missing values.
Replacement operations affecting a single column can be performed using replace!
:
julia> using DataFrames
julia> df = DataFrame(a=["a", "None", "b", "None"], b=1:4,
c=["None", "j", "k", "h"], d=["x", "y", "None", "z"])
4×4 DataFrame
Row │ a b c d
│ String Int64 String String
─────┼───────────────────────────────
1 │ a 1 None x
2 │ None 2 j y
3 │ b 3 k None
4 │ None 4 h z
julia> replace!(df.a, "None" => "c")
4-element Vector{String}:
"a"
"c"
"b"
"c"
julia> df
4×4 DataFrame
Row │ a b c d
│ String Int64 String String
─────┼───────────────────────────────
1 │ a 1 None x
2 │ c 2 j y
3 │ b 3 k None
4 │ c 4 h z
This is equivalent to df.a = replace(df.a, "None" => "c")
, but operates
in-place, without allocating a new column vector.
Replacement operations on multiple columns or on the whole data frame can be performed in-place using the broadcasting syntax:
# replacement on a subset of columns [:c, :d]
julia> df[:, [:c, :d]] .= ifelse.(df[!, [:c, :d]] .== "None", "c", df[!, [:c, :d]])
4×2 SubDataFrame
Row │ c d
│ String String
─────┼────────────────
1 │ c x
2 │ j y
3 │ k c
4 │ h z
julia> df
4×4 DataFrame
Row │ a b c d
│ String Int64 String String
─────┼───────────────────────────────
1 │ a 1 c x
2 │ c 2 j y
3 │ b 3 k c
4 │ c 4 h z
julia> df .= ifelse.(df .== "c", "None", df) # replacement on entire data frame
4×4 DataFrame
Row │ a b c d
│ String Int64 String String
─────┼───────────────────────────────
1 │ a 1 None x
2 │ None 2 j y
3 │ b 3 k None
4 │ None 4 h z
Do note that in the above examples, changing .=
to just =
will allocate new
column vectors instead of applying the operation in-place.
When replacing values with missing
, if the columns do not already allow for
missing values, one has to either avoid in-place operation and use =
instead
of .=
, or call allowmissing!
beforehand:
julia> df2 = ifelse.(df .== "None", missing, df) # do not operate in-place (`df = ` would also work)
4×4 DataFrame
Row │ a b c d
│ String? Int64 String? String?
─────┼──────────────────────────────────
1 │ a 1 missing x
2 │ missing 2 j y
3 │ b 3 k missing
4 │ missing 4 h z
julia> allowmissing!(df) # operate in-place after allowing for missing
4×4 DataFrame
Row │ a b c d
│ String? Int64? String? String?
─────┼───────────────────────────────────
1 │ a 1 None x
2 │ None 2 j y
3 │ b 3 k None
4 │ None 4 h z
julia> df .= ifelse.(df .== "None", missing, df)
4×4 DataFrame
Row │ a b c d
│ String? Int64? String? String?
─────┼───────────────────────────────────
1 │ a 1 missing x
2 │ missing 2 j y
3 │ b 3 k missing
4 │ missing 4 h z