Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

pivoted cholesky(I(2)) not implemented #1069

Closed
3f6a opened this issue May 8, 2024 · 3 comments · Fixed by JuliaLang/julia#54585
Closed

pivoted cholesky(I(2)) not implemented #1069

3f6a opened this issue May 8, 2024 · 3 comments · Fixed by JuliaLang/julia#54585

Comments

@3f6a
Copy link

3f6a commented May 8, 2024

julia> cholesky(I(2), RowMaximum(); check=false)
ERROR: ArgumentError: generic pivoted Cholesky factorization is not implemented yet
Stacktrace:
 [1] cholesky!(A::Hermitian{Float64, Diagonal{Float64, Vector{Float64}}}, ::RowMaximum; tol::Float64, check::Bool)
   @ LinearAlgebra ~/.julia/juliaup/julia-1.10.3+0.x64.linux.gnu/share/julia/stdlib/v1.10/LinearAlgebra/src/cholesky.jl:320
 [2] cholesky!(A::Diagonal{Float64, Vector{Float64}}, ::RowMaximum; tol::Float64, check::Bool)
   @ LinearAlgebra ~/.julia/juliaup/julia-1.10.3+0.x64.linux.gnu/share/julia/stdlib/v1.10/LinearAlgebra/src/cholesky.jl:341
 [3] cholesky(A::Diagonal{Bool, Vector{Bool}}, ::RowMaximum; tol::Float64, check::Bool)
   @ LinearAlgebra ~/.julia/juliaup/julia-1.10.3+0.x64.linux.gnu/share/julia/stdlib/v1.10/LinearAlgebra/src/cholesky.jl:467
 [4] top-level scope
   @ REPL[7]:1

Seems like a trivial method is missing here?

@palday
Copy link
Contributor

palday commented May 23, 2024

Is the fix as easy as defining

julia> using LinearAlgebra

julia> function LinearAlgebra.cholesky!(A::Diagonal{T}, ::RowMaximum; tol=0.0, check::Bool=true) where {T <: Real}
           A .= T.(sqrt.(A))
           rank = size(A, 1)
           uplo = 'L'
           info = 0
           return CholeskyPivoted(A, uplo, 1:rank, rank, tol, info)
       end

julia> function LinearAlgebra.cholesky(A::Diagonal, ::RowMaximum; tol=0.0, check::Bool=true)
           A = sqrt.(A)
           rank = size(A, 1)
           uplo = 'L'
           info = 0
           return CholeskyPivoted(A, uplo, 1:rank, rank, tol, info)
       end

julia> cholesky(2 * I(2))
Cholesky{Float64, Diagonal{Float64, Vector{Float64}}}
U factor:
2×2 Diagonal{Float64, Vector{Float64}}:
 1.41421    
         1.41421

julia> cholesky(2 * I(2), RowMaximum())
CholeskyPivoted{Float64, Diagonal{Float64, Vector{Float64}}, UnitRange{Int64}}
L factor with rank 2:
2×2 LowerTriangular{Float64, Diagonal{Float64, Vector{Float64}}}:
 1.41421    
 0.0      1.41421
permutation:
1:2

julia> cholesky!(2 * I(2), RowMaximum())
ERROR: InexactError: Int64(1.4142135623730951)
Stacktrace:
 [1] Int64
   @ ./float.jl:900 [inlined]
 [2] _broadcast_getindex_evalf
   @ ./broadcast.jl:683 [inlined]
 [3] _broadcast_getindex
   @ ./broadcast.jl:656 [inlined]
 [4] copyto!(dest::Diagonal{Int64, Vector{Int64}}, bc::Base.Broadcast.Broadcasted{LinearAlgebra.StructuredMatrixStyle{Diagonal{Int64, Vector{Int64}}}, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}, Type{Int64}, Tuple{Base.Broadcast.Broadcasted{LinearAlgebra.StructuredMatrixStyle{Diagonal{Int64, Vector{Int64}}}, Nothing, typeof(sqrt), Tuple{Diagonal{Int64, Vector{Int64}}}}}})
   @ LinearAlgebra ~/.julia/juliaup/julia-1.9.4+0.aarch64.apple.darwin14/share/julia/stdlib/v1.9/LinearAlgebra/src/structuredbroadcast.jl:160
 [5] materialize!
   @ ./broadcast.jl:884 [inlined]
 [6] materialize!
   @ ./broadcast.jl:881 [inlined]
 [7] #cholesky!#7
   @ ./REPL[5]:2 [inlined]
 [8] cholesky!(A::Diagonal{Int64, Vector{Int64}}, ::RowMaximum)
   @ Main ./REPL[5]:1
 [9] top-level scope
   @ REPL[9]:1

julia> cholesky!(4 * I(2), RowMaximum())
CholeskyPivoted{Int64, Diagonal{Int64, Vector{Int64}}, UnitRange{Int64}}
L factor with rank 2:
2×2 LowerTriangular{Int64, Diagonal{Int64, Vector{Int64}}}:
 2  
 0  2
permutation:
1:2

julia> cholesky!(2.0 * I(2), RowMaximum())
CholeskyPivoted{Float64, Diagonal{Float64, Vector{Float64}}, UnitRange{Int64}}
L factor with rank 2:
2×2 LowerTriangular{Float64, Diagonal{Float64, Vector{Float64}}}:
 1.41421    
 0.0      1.41421
permutation:
1:2

julia> cholesky(2 * I(2), RowMaximum())
CholeskyPivoted{Float64, Diagonal{Float64, Vector{Float64}}, UnitRange{Int64}}
L factor with rank 2:
2×2 LowerTriangular{Float64, Diagonal{Float64, Vector{Float64}}}:
 1.41421    
 0.0      1.41421
permutation:
1:2

julia> cholesky(2.0 * I(2), RowMaximum())
CholeskyPivoted{Float64, Diagonal{Float64, Vector{Float64}}, UnitRange{Int64}}
L factor with rank 2:
2×2 LowerTriangular{Float64, Diagonal{Float64, Vector{Float64}}}:
 1.41421    
 0.0      1.41421
permutation:
1:2

?

I'm unsure how I feel about

function LinearAlgebra.cholesky!(A::Diagonal{T}, ::RowMaximum; tol=0.0, check::Bool=true) where {T <: Real}
    A .= T.(sqrt.(A))
    rank = size(A, 1)
    uplo = 'L'
    info = 0
    return CholeskyPivoted(A, uplo, 1:rank, rank, tol, info)
end

It means that sometimes it works for Int and sometimes doesn't. I guess we could be more restrictive and do

function LinearAlgebra.cholesky!(A::Diagonal{<:AbstractFloat}, ::RowMaximum; tol=0.0, check::Bool=true)
    A .= sqrt.(A)
    rank = size(A, 1)
    uplo = 'L'
    info = 0
    return CholeskyPivoted(A, uplo, 1:rank, rank, tol, info)
end

thoughts @dkarrasch ? The other question is whether we should call collect(1:rank) or just return the range. Let me know and I'll open up a PR.

@palday
Copy link
Contributor

palday commented May 24, 2024

Hmmm, I guess I need to also handle the case where one of the diagonal elements is zero. In that case, I would call collect(1:rank) for consistency when there's an actual pivot.

@dkarrasch
Copy link
Member

dkarrasch commented May 24, 2024

I'm not sure how exactly the pivoting works, but I thought that pivoted Cholesky is rank revealing in the sense that the (almost) zero diagonal entries come at the end:

julia> using LinearAlgebra

julia> D = Diagonal(collect(0:9));

julia> cholesky(Matrix(D), RowMaximum(), check = false)
CholeskyPivoted{Float64, Matrix{Float64}, Vector{Int64}}
U factor with rank 9:
10×10 UpperTriangular{Float64, Matrix{Float64}}:
 3.0  0.0      0.0      0.0      0.0      0.0  0.0      0.0      0.0  0.0
     2.82843  0.0      0.0      0.0      0.0  0.0      0.0      0.0  0.0
             2.64575  0.0      0.0      0.0  0.0      0.0      0.0  0.0
                     2.44949  0.0      0.0  0.0      0.0      0.0  0.0
                             2.23607  0.0  0.0      0.0      0.0  0.0
                                     2.0  0.0      0.0      0.0  0.0
                                         1.73205  0.0      0.0  0.0
                                                 1.41421  0.0  0.0
                                                         1.0  0.0
                                                             0.0
permutation:
10-element Vector{Int64}:
 10
  9
  8
  7
  6
  5
  4
  3
  2
  1

ADDENDUM: Also, in this simple case with a clear zero we need to set check = false because otherwise the matrix method throws a RankDeficientException(1).

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging a pull request may close this issue.

3 participants