-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathgc.c
3053 lines (2835 loc) · 109 KB
/
gc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// This file is a part of Julia. License is MIT: https://julialang.org/license
#include "gc.h"
#include "julia_assert.h"
#ifdef __cplusplus
extern "C" {
#endif
// Protect all access to `finalizer_list_marked` and `to_finalize`.
// For accessing `ptls->finalizers`, the lock is needed if a thread
// is going to realloc the buffer (of its own list) or accessing the
// list of another thread
static jl_mutex_t finalizers_lock;
static jl_mutex_t gc_cache_lock;
/**
* Note about GC synchronization:
*
* When entering `jl_gc_collect()`, `jl_gc_running` is atomically changed from
* `0` to `1` to make sure that only one thread can be running the GC. Other
* threads that enters `jl_gc_collect()` at the same time (or later calling
* from unmanaged code) will wait in `jl_gc_collect()` until the GC is finished.
*
* Before starting the mark phase the GC thread calls `jl_safepoint_gc_start()`
* and `jl_gc_wait_for_the_world()`
* to make sure all the thread are in a safe state for the GC. The function
* activates the safepoint and wait for all the threads to get ready for the
* GC (`gc_state != 0`). It also acquires the `finalizers` lock so that no
* other thread will access them when the GC is running.
*
* During the mark and sweep phase of the GC, the threads that are not running
* the GC should either be running unmanaged code (or code section that does
* not have a GC critical region mainly including storing to the stack or
* another object) or paused at a safepoint and wait for the GC to finish.
* If a thread want to switch from running unmanaged code to running managed
* code, it has to perform a GC safepoint check after setting the `gc_state`
* flag (see `jl_gc_state_save_and_set()`. it is possible that the thread might
* have `gc_state == 0` in the middle of the GC transition back before entering
* the safepoint. This is fine since the thread won't be executing any GC
* critical region during that time).
*
* The finalizers are run after the GC finishes in normal mode (the `gc_state`
* when `jl_gc_collect` is called) with `jl_in_finalizer = 1`. (TODO:) When we
* have proper support of GC transition in codegen, we should execute the
* finalizers in unmanaged (GC safe) mode.
*/
jl_gc_num_t gc_num = {0,0,0,0,0,0,0,0,0,0,0,0,0,0};
static size_t last_long_collect_interval;
pagetable_t memory_map;
// List of marked big objects. Not per-thread. Accessed only by master thread.
bigval_t *big_objects_marked = NULL;
// finalization
// `ptls->finalizers` and `finalizer_list_marked` might have tagged pointers.
// If an object pointer has the lowest bit set, the next pointer is an unboxed
// c function pointer.
// `to_finalize` should not have tagged pointers.
arraylist_t finalizer_list_marked;
arraylist_t to_finalize;
NOINLINE uintptr_t gc_get_stack_ptr(void)
{
return (uintptr_t)jl_get_frame_addr();
}
#define should_timeout() 0
#ifdef JULIA_ENABLE_THREADING
static void jl_gc_wait_for_the_world(void)
{
for (int i = 0;i < jl_n_threads;i++) {
jl_ptls_t ptls2 = jl_all_tls_states[i];
// FIXME: The acquire load pairs with the release stores
// in the signal handler of safepoint so we are sure that
// all the stores on those threads are visible. However,
// we're currently not using atomic stores in mutator threads.
// We should either use atomic store release there too or use signals
// to flush the memory operations on those threads.
while (!ptls2->gc_state || !jl_atomic_load_acquire(&ptls2->gc_state)) {
jl_cpu_pause(); // yield?
}
}
}
#else
static inline void jl_gc_wait_for_the_world(void)
{
}
#endif
// malloc wrappers, aligned allocation
#define malloc_cache_align(sz) jl_malloc_aligned(sz, JL_CACHE_BYTE_ALIGNMENT)
#define realloc_cache_align(p, sz, oldsz) jl_realloc_aligned(p, sz, oldsz, JL_CACHE_BYTE_ALIGNMENT)
static void schedule_finalization(void *o, void *f)
{
arraylist_push(&to_finalize, o);
arraylist_push(&to_finalize, f);
}
static void run_finalizer(jl_ptls_t ptls, jl_value_t *o, jl_value_t *ff)
{
assert(!jl_typeis(ff, jl_voidpointer_type));
jl_value_t *args[2] = {ff,o};
JL_TRY {
size_t last_age = jl_get_ptls_states()->world_age;
jl_get_ptls_states()->world_age = jl_world_counter;
jl_apply(args, 2);
jl_get_ptls_states()->world_age = last_age;
}
JL_CATCH {
jl_printf(JL_STDERR, "error in running finalizer: ");
jl_static_show(JL_STDERR, ptls->exception_in_transit);
jl_printf(JL_STDERR, "\n");
}
}
// if `need_sync` is true, the `list` is the `finalizers` list of another
// thread and we need additional synchronizations
static void finalize_object(arraylist_t *list, jl_value_t *o,
arraylist_t *copied_list, int need_sync)
{
// The acquire load makes sure that the first `len` objects are valid.
// If `need_sync` is true, all mutations of the content should be limited
// to the first `oldlen` elements and no mutation is allowed after the
// new length is published with the `cmpxchg` at the end of the function.
// This way, the mutation should not conflict with the owning thread,
// which only writes to locations later than `len`
// and will not resize the buffer without acquiring the lock.
size_t len = need_sync ? jl_atomic_load_acquire(&list->len) : list->len;
size_t oldlen = len;
void **items = list->items;
for (size_t i = 0; i < len; i += 2) {
void *v = items[i];
int move = 0;
if (o == (jl_value_t*)gc_ptr_clear_tag(v, 1)) {
void *f = items[i + 1];
move = 1;
if (gc_ptr_tag(v, 1)) {
((void (*)(void*))(uintptr_t)f)(o);
}
else {
arraylist_push(copied_list, o);
arraylist_push(copied_list, f);
}
}
if (move || __unlikely(!v)) {
if (i < len - 2) {
items[i] = items[len - 2];
items[i + 1] = items[len - 1];
i -= 2;
}
len -= 2;
}
}
if (oldlen == len)
return;
if (need_sync) {
// The memset needs to be unconditional since the thread might have
// already read the length.
// The `memset` (like any other content mutation) has to be done
// **before** the `cmpxchg` which publishes the length.
memset(&items[len], 0, (oldlen - len) * sizeof(void*));
jl_atomic_compare_exchange(&list->len, oldlen, len);
}
else {
list->len = len;
}
}
// The first two entries are assumed to be empty and the rest are assumed to
// be pointers to `jl_value_t` objects
static void jl_gc_push_arraylist(jl_ptls_t ptls, arraylist_t *list)
{
void **items = list->items;
items[0] = (void*)(((uintptr_t)list->len - 2) << 1);
items[1] = ptls->pgcstack;
ptls->pgcstack = (jl_gcframe_t*)items;
}
// Same assumption as `jl_gc_push_arraylist`. Requires the finalizers lock
// to be hold for the current thread and will release the lock when the
// function returns.
static void jl_gc_run_finalizers_in_list(jl_ptls_t ptls, arraylist_t *list)
{
size_t len = list->len;
jl_value_t **items = (jl_value_t**)list->items;
jl_gc_push_arraylist(ptls, list);
JL_UNLOCK_NOGC(&finalizers_lock);
// from jl_apply_with_saved_exception_state; to hoist state saving out of the loop
jl_value_t *exc = ptls->exception_in_transit;
jl_array_t *bt = NULL;
jl_array_t *bt2 = NULL;
JL_GC_PUSH3(&exc, &bt, &bt2);
if (ptls->bt_size > 0) {
jl_get_backtrace(&bt, &bt2);
ptls->bt_size = 0;
}
for (size_t i = 2;i < len;i += 2)
run_finalizer(ptls, items[i], items[i + 1]);
ptls->exception_in_transit = exc;
if (bt != NULL) {
// This is sufficient because bt2 roots the managed values
memcpy(ptls->bt_data, bt->data, jl_array_len(bt) * sizeof(void*));
ptls->bt_size = jl_array_len(bt);
}
JL_GC_POP();
// matches the jl_gc_push_arraylist above
JL_GC_POP();
}
static void run_finalizers(jl_ptls_t ptls)
{
// Racy fast path:
// The race here should be OK since the race can only happen if
// another thread is writing to it with the lock held. In such case,
// we don't need to run pending finalizers since the writer thread
// will flush it.
if (to_finalize.len == 0)
return;
JL_LOCK_NOGC(&finalizers_lock);
if (to_finalize.len == 0) {
JL_UNLOCK_NOGC(&finalizers_lock);
return;
}
arraylist_t copied_list;
memcpy(&copied_list, &to_finalize, sizeof(copied_list));
if (to_finalize.items == to_finalize._space) {
copied_list.items = copied_list._space;
}
arraylist_new(&to_finalize, 0);
// empty out the first two entries for the GC frame
arraylist_push(&copied_list, copied_list.items[0]);
arraylist_push(&copied_list, copied_list.items[1]);
// This releases the finalizers lock.
jl_gc_run_finalizers_in_list(ptls, &copied_list);
arraylist_free(&copied_list);
}
JL_DLLEXPORT void jl_gc_enable_finalizers(jl_ptls_t ptls, int on)
{
int old_val = ptls->finalizers_inhibited;
int new_val = old_val + (on ? -1 : 1);
ptls->finalizers_inhibited = new_val;
if (!new_val && old_val && !ptls->in_finalizer) {
ptls->in_finalizer = 1;
run_finalizers(ptls);
ptls->in_finalizer = 0;
}
}
static void schedule_all_finalizers(arraylist_t *flist)
{
void **items = flist->items;
size_t len = flist->len;
for(size_t i = 0; i < len; i+=2) {
void *v = items[i];
void *f = items[i + 1];
if (__unlikely(!v))
continue;
if (!gc_ptr_tag(v, 1)) {
schedule_finalization(v, f);
}
else {
((void (*)(void*))(uintptr_t)f)(gc_ptr_clear_tag(v, 1));
}
}
flist->len = 0;
}
void jl_gc_run_all_finalizers(jl_ptls_t ptls)
{
for (int i = 0;i < jl_n_threads;i++) {
jl_ptls_t ptls2 = jl_all_tls_states[i];
schedule_all_finalizers(&ptls2->finalizers);
}
schedule_all_finalizers(&finalizer_list_marked);
run_finalizers(ptls);
}
static void gc_add_finalizer_(jl_ptls_t ptls, void *v, void *f)
{
int8_t gc_state = jl_gc_unsafe_enter(ptls);
arraylist_t *a = &ptls->finalizers;
// This acquire load and the release store at the end are used to
// synchronize with `finalize_object` on another thread. Apart from the GC,
// which is blocked by entering a unsafe region, there might be only
// one other thread accessing our list in `finalize_object`
// (only one thread since it needs to acquire the finalizer lock).
// Similar to `finalize_object`, all content mutation has to be done
// between the acquire and the release of the length.
size_t oldlen = jl_atomic_load_acquire(&a->len);
if (__unlikely(oldlen + 2 > a->max)) {
JL_LOCK_NOGC(&finalizers_lock);
// `a->len` might have been modified.
// Another possiblility is to always grow the array to `oldlen + 2` but
// it's simpler this way and uses slightly less memory =)
oldlen = a->len;
arraylist_grow(a, 2);
a->len = oldlen;
JL_UNLOCK_NOGC(&finalizers_lock);
}
void **items = a->items;
items[oldlen] = v;
items[oldlen + 1] = f;
jl_atomic_store_release(&a->len, oldlen + 2);
jl_gc_unsafe_leave(ptls, gc_state);
}
STATIC_INLINE void gc_add_ptr_finalizer(jl_ptls_t ptls, jl_value_t *v, void *f)
{
gc_add_finalizer_(ptls, (void*)(((uintptr_t)v) | 1), f);
}
JL_DLLEXPORT void jl_gc_add_finalizer_th(jl_ptls_t ptls, jl_value_t *v,
jl_function_t *f)
{
if (__unlikely(jl_typeis(f, jl_voidpointer_type))) {
gc_add_ptr_finalizer(ptls, v, jl_unbox_voidpointer(f));
}
else {
gc_add_finalizer_(ptls, v, f);
}
}
JL_DLLEXPORT void jl_gc_add_ptr_finalizer(jl_ptls_t ptls, jl_value_t *v, void *f)
{
gc_add_ptr_finalizer(ptls, v, f);
}
JL_DLLEXPORT void jl_finalize_th(jl_ptls_t ptls, jl_value_t *o)
{
JL_LOCK_NOGC(&finalizers_lock);
// Copy the finalizers into a temporary list so that code in the finalizer
// won't change the list as we loop through them.
// This list is also used as the GC frame when we are running the finalizers
arraylist_t copied_list;
arraylist_new(&copied_list, 0);
arraylist_push(&copied_list, NULL); // GC frame size to be filled later
arraylist_push(&copied_list, NULL); // pgcstack to be filled later
// No need to check the to_finalize list since the user is apparently
// still holding a reference to the object
for (int i = 0;i < jl_n_threads;i++) {
jl_ptls_t ptls2 = jl_all_tls_states[i];
finalize_object(&ptls2->finalizers, o, &copied_list, ptls != ptls2);
}
finalize_object(&finalizer_list_marked, o, &copied_list, 0);
if (copied_list.len > 2) {
// This releases the finalizers lock.
jl_gc_run_finalizers_in_list(ptls, &copied_list);
}
else {
JL_UNLOCK_NOGC(&finalizers_lock);
}
arraylist_free(&copied_list);
}
// GC knobs and self-measurement variables
static int64_t last_gc_total_bytes = 0;
#ifdef _P64
#define default_collect_interval (5600*1024*sizeof(void*))
static size_t max_collect_interval = 1250000000UL;
#else
#define default_collect_interval (3200*1024*sizeof(void*))
static size_t max_collect_interval = 500000000UL;
#endif
// global variables for GC stats
// Resetting the object to a young object, this is used when marking the
// finalizer list to collect them the next time because the object is very
// likely dead. This also won't break the GC invariance since these objects
// are not reachable from anywhere else.
static int mark_reset_age = 0;
/*
* The state transition looks like :
*
* ([(quick)sweep] means either a sweep or a quicksweep)
*
* <-[(quick)sweep]-
* |
* ----> GC_OLD <--[(quick)sweep && age>promotion]--
* | | |
* | | GC_MARKED (in remset) |
* | | ^ | |
* | [mark] | [mark] |
* | | | | |
* | | | | |
* [sweep] | [write barrier] | |
* | v | v |
* ----- GC_OLD_MARKED <---- |
* | ^ |
* | | |
* --[quicksweep]--- |
* |
* ========= above this line objects are old ========= |
* |
* ----[new]------> GC_CLEAN ------[mark]-----------> GC_MARKED
* | ^ |
* <-[(quick)sweep]--- | |
* --[(quick)sweep && age<=promotion]---
*/
// A quick sweep is a sweep where `!sweep_full`
// It means we won't touch GC_OLD_MARKED objects (old gen).
// When a reachable object has survived more than PROMOTE_AGE+1 collections
// it is tagged with GC_OLD during sweep and will be promoted on next mark
// because at that point we can know easily if it references young objects.
// Marked old objects that reference young ones are kept in the remset.
// When a write barrier triggers, the offending marked object is both queued,
// so as not to trigger the barrier again, and put in the remset.
#define PROMOTE_AGE 1
// this cannot be increased as is without changing :
// - sweep_page which is specialized for 1bit age
// - the size of the age storage in jl_gc_pagemeta_t
static int64_t scanned_bytes; // young bytes scanned while marking
static int64_t perm_scanned_bytes; // old bytes scanned while marking
static int prev_sweep_full = 1;
#define inc_sat(v,s) v = (v) >= s ? s : (v)+1
// Full collection heuristics
static int64_t live_bytes = 0;
static int64_t promoted_bytes = 0;
static int64_t last_full_live_ub = 0;
static int64_t last_full_live_est = 0;
// upper bound and estimated live object sizes
// This heuristic should be really unlikely to trigger.
// However, this should be simple enough to trigger a full collection
// when it's necessary if other heuristics are messed up.
// It is also possible to take the total memory available into account
// if necessary.
STATIC_INLINE int gc_check_heap_size(int64_t sz_ub, int64_t sz_est)
{
if (__unlikely(!last_full_live_ub || last_full_live_ub > sz_ub)) {
last_full_live_ub = sz_ub;
}
else if (__unlikely(last_full_live_ub * 3 / 2 < sz_ub)) {
return 1;
}
if (__unlikely(!last_full_live_est || last_full_live_est > sz_est)) {
last_full_live_est = sz_est;
}
else if (__unlikely(last_full_live_est * 2 < sz_est)) {
return 1;
}
return 0;
}
STATIC_INLINE void gc_update_heap_size(int64_t sz_ub, int64_t sz_est)
{
last_full_live_ub = sz_ub;
last_full_live_est = sz_est;
}
static void gc_sync_cache_nolock(jl_ptls_t ptls, jl_gc_mark_cache_t *gc_cache)
{
const int nbig = gc_cache->nbig_obj;
for (int i = 0; i < nbig; i++) {
void *ptr = gc_cache->big_obj[i];
bigval_t *hdr = (bigval_t*)gc_ptr_clear_tag(ptr, 1);
gc_big_object_unlink(hdr);
if (gc_ptr_tag(ptr, 1)) {
gc_big_object_link(hdr, &ptls->heap.big_objects);
}
else {
// Move hdr from `big_objects` list to `big_objects_marked list`
gc_big_object_link(hdr, &big_objects_marked);
}
}
gc_cache->nbig_obj = 0;
perm_scanned_bytes += gc_cache->perm_scanned_bytes;
scanned_bytes += gc_cache->scanned_bytes;
gc_cache->perm_scanned_bytes = 0;
gc_cache->scanned_bytes = 0;
}
static void gc_sync_cache(jl_ptls_t ptls)
{
JL_LOCK_NOGC(&gc_cache_lock);
gc_sync_cache_nolock(ptls, &ptls->gc_cache);
JL_UNLOCK_NOGC(&gc_cache_lock);
}
// No other threads can be running marking at the same time
static void gc_sync_all_caches_nolock(jl_ptls_t ptls)
{
for (int t_i = 0; t_i < jl_n_threads; t_i++) {
jl_ptls_t ptls2 = jl_all_tls_states[t_i];
gc_sync_cache_nolock(ptls, &ptls2->gc_cache);
}
}
STATIC_INLINE void gc_queue_big_marked(jl_ptls_t ptls, bigval_t *hdr,
int toyoung)
{
const int nentry = sizeof(ptls->gc_cache.big_obj) / sizeof(void*);
size_t nobj = ptls->gc_cache.nbig_obj;
if (__unlikely(nobj >= nentry)) {
gc_sync_cache(ptls);
nobj = 0;
}
uintptr_t v = (uintptr_t)hdr;
ptls->gc_cache.big_obj[nobj] = (void*)(toyoung ? (v | 1) : v);
ptls->gc_cache.nbig_obj = nobj + 1;
}
// `gc_setmark_tag` can be called concurrently on multiple threads.
// In all cases, the function atomically sets the mark bits and returns
// the GC bits set as well as if the tag was unchanged by this thread.
// All concurrent calls on the same object are guaranteed to be setting the
// bits to the same value.
// For normal objects, this is the bits with only `GC_MARKED` changed to `1`
// For buffers, this is the bits of the owner object.
// For `mark_reset_age`, this is `GC_MARKED` with `GC_OLD` cleared.
// The return value is `1` if the object was not marked before.
// Returning `0` can happen if another thread marked it in parallel.
STATIC_INLINE int gc_setmark_tag(jl_taggedvalue_t *o, uint8_t mark_mode,
uintptr_t tag, uint8_t *bits)
{
assert(!gc_marked(tag));
assert(gc_marked(mark_mode));
if (mark_reset_age) {
// Reset the object as if it was just allocated
mark_mode = GC_MARKED;
tag = gc_set_bits(tag, mark_mode);
}
else {
if (gc_old(tag))
mark_mode = GC_OLD_MARKED;
tag = tag | mark_mode;
assert((tag & 0x3) == mark_mode);
}
*bits = mark_mode;
tag = jl_atomic_exchange_relaxed(&o->header, tag);
verify_val(jl_valueof(o));
return !gc_marked(tag);
}
// This function should be called exactly once during marking for each big
// object being marked to update the big objects metadata.
STATIC_INLINE void gc_setmark_big(jl_ptls_t ptls, jl_taggedvalue_t *o,
uint8_t mark_mode)
{
assert(!page_metadata(o));
bigval_t *hdr = bigval_header(o);
if (mark_mode == GC_OLD_MARKED) {
ptls->gc_cache.perm_scanned_bytes += hdr->sz & ~3;
gc_queue_big_marked(ptls, hdr, 0);
}
else {
ptls->gc_cache.scanned_bytes += hdr->sz & ~3;
// We can't easily tell if the object is old or being promoted
// from the gc bits but if the `age` is `0` then the object
// must be already on a young list.
if (mark_reset_age && hdr->age) {
// Reset the object as if it was just allocated
hdr->age = 0;
gc_queue_big_marked(ptls, hdr, 1);
}
}
objprofile_count(jl_typeof(jl_valueof(o)),
mark_mode == GC_OLD_MARKED, hdr->sz & ~3);
}
// This function should be called exactly once during marking for each pool
// object being marked to update the page metadata.
STATIC_INLINE void gc_setmark_pool_(jl_ptls_t ptls, jl_taggedvalue_t *o,
uint8_t mark_mode,
jl_gc_pagemeta_t *page)
{
#ifdef MEMDEBUG
gc_setmark_big(ptls, o, mark_mode);
#else
if (mark_mode == GC_OLD_MARKED) {
ptls->gc_cache.perm_scanned_bytes += page->osize;
jl_atomic_fetch_add_relaxed(&page->nold, 1);
}
else {
ptls->gc_cache.scanned_bytes += page->osize;
if (mark_reset_age) {
page->has_young = 1;
char *page_begin = gc_page_data(o) + GC_PAGE_OFFSET;
int obj_id = (((char*)o) - page_begin) / page->osize;
uint8_t *ages = page->ages + obj_id / 8;
jl_atomic_fetch_and_relaxed(ages, ~(1 << (obj_id % 8)));
}
}
objprofile_count(jl_typeof(jl_valueof(o)),
mark_mode == GC_OLD_MARKED, page->osize);
page->has_marked = 1;
#endif
}
STATIC_INLINE void gc_setmark_pool(jl_ptls_t ptls, jl_taggedvalue_t *o,
uint8_t mark_mode)
{
gc_setmark_pool_(ptls, o, mark_mode, jl_assume(page_metadata(o)));
}
STATIC_INLINE void gc_setmark(jl_ptls_t ptls, jl_taggedvalue_t *o,
uint8_t mark_mode, size_t sz)
{
if (sz <= GC_MAX_SZCLASS) {
gc_setmark_pool(ptls, o, mark_mode);
}
else {
gc_setmark_big(ptls, o, mark_mode);
}
}
STATIC_INLINE void gc_setmark_buf_(jl_ptls_t ptls, void *o, uint8_t mark_mode, size_t minsz)
{
jl_taggedvalue_t *buf = jl_astaggedvalue(o);
uintptr_t tag = buf->header;
if (gc_marked(tag))
return;
uint8_t bits;
// If the object is larger than the max pool size it can't be a pool object.
// This should be accurate most of the time but there might be corner cases
// where the size estimate is a little off so we do a pool lookup to make
// sure.
if (__likely(gc_setmark_tag(buf, mark_mode, tag, &bits)) && !gc_verifying) {
if (minsz <= GC_MAX_SZCLASS) {
jl_gc_pagemeta_t *page = page_metadata(buf);
if (page) {
gc_setmark_pool_(ptls, buf, bits, page);
return;
}
}
gc_setmark_big(ptls, buf, bits);
}
}
void gc_setmark_buf(jl_ptls_t ptls, void *o, uint8_t mark_mode, size_t minsz)
{
gc_setmark_buf_(ptls, o, mark_mode, minsz);
}
void jl_gc_force_mark_old(jl_ptls_t ptls, jl_value_t *v)
{
jl_taggedvalue_t *o = jl_astaggedvalue(v);
jl_datatype_t *dt = (jl_datatype_t*)jl_typeof(v);
size_t dtsz = jl_datatype_size(dt);
if (o->bits.gc == GC_OLD_MARKED)
return;
o->bits.gc = GC_OLD_MARKED;
if (dt == jl_simplevector_type) {
size_t l = jl_svec_len(v);
dtsz = l * sizeof(void*) + sizeof(jl_svec_t);
}
else if (dt->name == jl_array_typename) {
jl_array_t *a = (jl_array_t*)v;
if (!a->flags.pooled)
dtsz = GC_MAX_SZCLASS + 1;
}
else if (dt == jl_module_type) {
dtsz = sizeof(jl_module_t);
}
else if (dt == jl_task_type) {
dtsz = sizeof(jl_task_t);
}
else if (dt == jl_symbol_type) {
return;
}
gc_setmark(ptls, o, GC_OLD_MARKED, dtsz);
if (dt->layout->npointers != 0)
jl_gc_queue_root(v);
}
#define should_collect() (__unlikely(gc_num.allocd>0))
static inline int maybe_collect(jl_ptls_t ptls)
{
if (should_collect() || gc_debug_check_other()) {
jl_gc_collect(0);
return 1;
}
jl_gc_safepoint_(ptls);
return 0;
}
// weak references
JL_DLLEXPORT jl_weakref_t *jl_gc_new_weakref_th(jl_ptls_t ptls,
jl_value_t *value)
{
jl_weakref_t *wr = (jl_weakref_t*)jl_gc_alloc(ptls, sizeof(void*),
jl_weakref_type);
wr->value = value; // NOTE: wb not needed here
arraylist_push(&ptls->heap.weak_refs, wr);
return wr;
}
static void sweep_weak_refs(void)
{
for (int i = 0;i < jl_n_threads;i++) {
jl_ptls_t ptls2 = jl_all_tls_states[i];
size_t n = 0;
size_t ndel = 0;
size_t l = ptls2->heap.weak_refs.len;
void **lst = ptls2->heap.weak_refs.items;
if (l == 0)
continue;
while (1) {
jl_weakref_t *wr = (jl_weakref_t*)lst[n];
if (gc_marked(jl_astaggedvalue(wr)->bits.gc)) {
// weakref itself is alive
if (!gc_marked(jl_astaggedvalue(wr->value)->bits.gc))
wr->value = (jl_value_t*)jl_nothing;
n++;
}
else {
ndel++;
}
if (n >= l - ndel)
break;
void *tmp = lst[n];
lst[n] = lst[n + ndel];
lst[n+ndel] = tmp;
}
ptls2->heap.weak_refs.len -= ndel;
}
}
// big value list
// Size includes the tag and the tag is not cleared!!
JL_DLLEXPORT jl_value_t *jl_gc_big_alloc(jl_ptls_t ptls, size_t sz)
{
maybe_collect(ptls);
size_t offs = offsetof(bigval_t, header);
static_assert(sizeof(bigval_t) % JL_HEAP_ALIGNMENT == 0, "");
size_t allocsz = LLT_ALIGN(sz + offs, JL_CACHE_BYTE_ALIGNMENT);
if (allocsz < sz) // overflow in adding offs, size was "negative"
jl_throw(jl_memory_exception);
bigval_t *v = (bigval_t*)malloc_cache_align(allocsz);
if (v == NULL)
jl_throw(jl_memory_exception);
#ifdef JULIA_ENABLE_THREADING
jl_atomic_fetch_add(&gc_num.allocd, allocsz);
#else
gc_num.allocd += allocsz;
#endif
gc_num.bigalloc++;
#ifdef MEMDEBUG
memset(v, 0xee, allocsz);
#endif
v->sz = allocsz;
v->age = 0;
gc_big_object_link(v, &ptls->heap.big_objects);
return jl_valueof(&v->header);
}
// Sweep list rooted at *pv, removing and freeing any unmarked objects.
// Return pointer to last `next` field in the culled list.
static bigval_t **sweep_big_list(int sweep_full, bigval_t **pv)
{
bigval_t *v = *pv;
while (v != NULL) {
bigval_t *nxt = v->next;
int bits = v->bits.gc;
int old_bits = bits;
if (gc_marked(bits)) {
pv = &v->next;
int age = v->age;
if (age >= PROMOTE_AGE || bits == GC_OLD_MARKED) {
if (sweep_full || bits == GC_MARKED) {
bits = GC_OLD;
}
}
else {
inc_sat(age, PROMOTE_AGE);
v->age = age;
bits = GC_CLEAN;
}
v->bits.gc = bits;
}
else {
// Remove v from list and free it
*pv = nxt;
if (nxt)
nxt->prev = pv;
gc_num.freed += v->sz&~3;
#ifdef MEMDEBUG
memset(v, 0xbb, v->sz&~3);
#endif
jl_free_aligned(v);
}
gc_time_count_big(old_bits, bits);
v = nxt;
}
return pv;
}
static void sweep_big(jl_ptls_t ptls, int sweep_full)
{
gc_time_big_start();
for (int i = 0;i < jl_n_threads;i++)
sweep_big_list(sweep_full, &jl_all_tls_states[i]->heap.big_objects);
if (sweep_full) {
bigval_t **last_next = sweep_big_list(sweep_full, &big_objects_marked);
// Move all survivors from big_objects_marked list to big_objects list.
if (ptls->heap.big_objects)
ptls->heap.big_objects->prev = last_next;
*last_next = ptls->heap.big_objects;
ptls->heap.big_objects = big_objects_marked;
if (ptls->heap.big_objects)
ptls->heap.big_objects->prev = &ptls->heap.big_objects;
big_objects_marked = NULL;
}
gc_time_big_end();
}
// tracking Arrays with malloc'd storage
void jl_gc_track_malloced_array(jl_ptls_t ptls, jl_array_t *a)
{
// This is **NOT** a GC safe point.
mallocarray_t *ma;
if (ptls->heap.mafreelist == NULL) {
ma = (mallocarray_t*)malloc(sizeof(mallocarray_t));
}
else {
ma = ptls->heap.mafreelist;
ptls->heap.mafreelist = ma->next;
}
ma->a = a;
ma->next = ptls->heap.mallocarrays;
ptls->heap.mallocarrays = ma;
}
void jl_gc_count_allocd(size_t sz)
{
// This is **NOT** a GC safe point.
gc_num.allocd += sz;
}
void jl_gc_reset_alloc_count(void)
{
live_bytes += (gc_num.deferred_alloc + (gc_num.allocd + gc_num.interval));
gc_num.allocd = -(int64_t)gc_num.interval;
gc_num.deferred_alloc = 0;
}
static size_t array_nbytes(jl_array_t *a)
{
size_t sz = 0;
if (jl_array_ndims(a)==1)
sz = a->elsize * a->maxsize + (a->elsize == 1 ? 1 : 0);
else
sz = a->elsize * jl_array_len(a);
if (!a->flags.ptrarray && jl_is_uniontype(jl_tparam0(jl_typeof(a))))
// account for isbits Union array selector bytes
sz += jl_array_len(a);
return sz;
}
static void jl_gc_free_array(jl_array_t *a)
{
if (a->flags.how == 2) {
char *d = (char*)a->data - a->offset*a->elsize;
if (a->flags.isaligned)
jl_free_aligned(d);
else
free(d);
gc_num.freed += array_nbytes(a);
}
}
static void sweep_malloced_arrays(void)
{
gc_time_mallocd_array_start();
for (int t_i = 0;t_i < jl_n_threads;t_i++) {
jl_ptls_t ptls2 = jl_all_tls_states[t_i];
mallocarray_t *ma = ptls2->heap.mallocarrays;
mallocarray_t **pma = &ptls2->heap.mallocarrays;
while (ma != NULL) {
mallocarray_t *nxt = ma->next;
int bits = jl_astaggedvalue(ma->a)->bits.gc;
if (gc_marked(bits)) {
pma = &ma->next;
}
else {
*pma = nxt;
assert(ma->a->flags.how == 2);
jl_gc_free_array(ma->a);
ma->next = ptls2->heap.mafreelist;
ptls2->heap.mafreelist = ma;
}
gc_time_count_mallocd_array(bits);
ma = nxt;
}
}
gc_time_mallocd_array_end();
}
// pool allocation
static inline jl_taggedvalue_t *reset_page(const jl_gc_pool_t *p, jl_gc_pagemeta_t *pg, jl_taggedvalue_t *fl)
{
assert(GC_PAGE_OFFSET >= sizeof(void*));
pg->nfree = (GC_PAGE_SZ - GC_PAGE_OFFSET) / p->osize;
jl_ptls_t ptls2 = jl_all_tls_states[pg->thread_n];
pg->pool_n = p - ptls2->heap.norm_pools;
memset(pg->ages, 0, GC_PAGE_SZ / 8 / p->osize + 1);
jl_taggedvalue_t *beg = (jl_taggedvalue_t*)(pg->data + GC_PAGE_OFFSET);
jl_taggedvalue_t *next = (jl_taggedvalue_t*)pg->data;
next->next = fl;
pg->has_young = 0;
pg->has_marked = 0;
pg->fl_begin_offset = -1;
pg->fl_end_offset = -1;
return beg;
}
// Add a new page to the pool. Discards any pages in `p->newpages` before.
static NOINLINE jl_taggedvalue_t *add_page(jl_gc_pool_t *p)
{
// Do not pass in `ptls` as argument. This slows down the fast path
// in pool_alloc significantly
jl_ptls_t ptls = jl_get_ptls_states();
jl_gc_pagemeta_t *pg = jl_gc_alloc_page();
pg->osize = p->osize;
pg->ages = (uint8_t*)malloc(GC_PAGE_SZ / 8 / p->osize + 1);
pg->thread_n = ptls->tid;
jl_taggedvalue_t *fl = reset_page(p, pg, NULL);
p->newpages = fl;
return fl;
}
// Size includes the tag and the tag is not cleared!!
JL_DLLEXPORT jl_value_t *jl_gc_pool_alloc(jl_ptls_t ptls, int pool_offset,
int osize)
{
// Use the pool offset instead of the pool address as the argument
// to workaround a llvm bug.
// Ref https://llvm.org/bugs/show_bug.cgi?id=27190
jl_gc_pool_t *p = (jl_gc_pool_t*)((char*)ptls + pool_offset);
#ifdef JULIA_ENABLE_THREADING
assert(ptls->gc_state == 0);
#endif
#ifdef MEMDEBUG
return jl_gc_big_alloc(ptls, osize);
#endif
// FIXME - need JL_ATOMIC_FETCH_AND_ADD here
if (__unlikely((gc_num.allocd += osize) >= 0) || gc_debug_check_pool()) {
//gc_num.allocd -= osize;
jl_gc_collect(0);
//gc_num.allocd += osize;
}
else {
jl_gc_safepoint_(ptls);
}
gc_num.poolalloc++;
// first try to use the freelist
jl_taggedvalue_t *v = p->freelist;
if (v) {
jl_taggedvalue_t *next = v->next;
p->freelist = next;
if (__unlikely(gc_page_data(v) != gc_page_data(next))) {
// we only update pg's fields when the freelist changes page
// since pg's metadata is likely not in cache
jl_gc_pagemeta_t *pg = jl_assume(page_metadata(v));
assert(pg->osize == p->osize);
pg->nfree = 0;
pg->has_young = 1;
}
return jl_valueof(v);
}
// if the freelist is empty we reuse empty but not freed pages
v = p->newpages;
jl_taggedvalue_t *next = (jl_taggedvalue_t*)((char*)v + osize);
// If there's no pages left or the current page is used up,
// we need to use the slow path.
char *cur_page = gc_page_data((char*)v - 1);
if (__unlikely(!v || cur_page + GC_PAGE_SZ < (char*)next)) {
if (v) {
// like the freelist case,
// but only update the page metadata when it is full
jl_gc_pagemeta_t *pg = jl_assume(page_metadata((char*)v - 1));
assert(pg->osize == p->osize);
pg->nfree = 0;
pg->has_young = 1;
v = *(jl_taggedvalue_t**)cur_page;
}
// Not an else!!
if (!v)