-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathmultidimensional.jl
1816 lines (1549 loc) · 65.2 KB
/
multidimensional.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is a part of Julia. License is MIT: https://julialang.org/license
### Multidimensional iterators
module IteratorsMD
import .Base: eltype, length, size, first, last, in, getindex,
setindex!, IndexStyle, min, max, zero, oneunit, isless, eachindex,
ndims, IteratorSize, convert, show, iterate, promote_rule, to_indices
import .Base: +, -, *, (:)
import .Base: simd_outer_range, simd_inner_length, simd_index, setindex
using .Base: IndexLinear, IndexCartesian, AbstractCartesianIndex, fill_to_length, tail,
ReshapedArray, ReshapedArrayLF, OneTo
using .Base.Iterators: Reverse, PartitionIterator
export CartesianIndex, CartesianIndices
"""
CartesianIndex(i, j, k...) -> I
CartesianIndex((i, j, k...)) -> I
Create a multidimensional index `I`, which can be used for
indexing a multidimensional array `A`. In particular, `A[I]` is
equivalent to `A[i,j,k...]`. One can freely mix integer and
`CartesianIndex` indices; for example, `A[Ipre, i, Ipost]` (where
`Ipre` and `Ipost` are `CartesianIndex` indices and `i` is an
`Int`) can be a useful expression when writing algorithms that
work along a single dimension of an array of arbitrary
dimensionality.
A `CartesianIndex` is sometimes produced by [`eachindex`](@ref), and
always when iterating with an explicit [`CartesianIndices`](@ref).
# Examples
```jldoctest
julia> A = reshape(Vector(1:16), (2, 2, 2, 2))
2×2×2×2 Array{Int64, 4}:
[:, :, 1, 1] =
1 3
2 4
[:, :, 2, 1] =
5 7
6 8
[:, :, 1, 2] =
9 11
10 12
[:, :, 2, 2] =
13 15
14 16
julia> A[CartesianIndex((1, 1, 1, 1))]
1
julia> A[CartesianIndex((1, 1, 1, 2))]
9
julia> A[CartesianIndex((1, 1, 2, 1))]
5
```
"""
struct CartesianIndex{N} <: AbstractCartesianIndex{N}
I::NTuple{N,Int}
CartesianIndex{N}(index::NTuple{N,Integer}) where {N} = new(index)
end
CartesianIndex(index::NTuple{N,Integer}) where {N} = CartesianIndex{N}(index)
CartesianIndex(index::Integer...) = CartesianIndex(index)
CartesianIndex{N}(index::Vararg{Integer,N}) where {N} = CartesianIndex{N}(index)
# Allow passing tuples smaller than N
CartesianIndex{N}(index::Tuple) where {N} = CartesianIndex{N}(fill_to_length(index, 1, Val(N)))
CartesianIndex{N}(index::Integer...) where {N} = CartesianIndex{N}(index)
CartesianIndex{N}() where {N} = CartesianIndex{N}(())
# Un-nest passed CartesianIndexes
CartesianIndex(index::Union{Integer, CartesianIndex}...) = CartesianIndex(flatten(index))
flatten(I::Tuple{}) = I
flatten(I::Tuple{Any}) = I
flatten(I::Tuple{<:CartesianIndex}) = I[1].I
@inline flatten(I) = _flatten(I...)
@inline _flatten() = ()
@inline _flatten(i, I...) = (i, _flatten(I...)...)
@inline _flatten(i::CartesianIndex, I...) = (i.I..., _flatten(I...)...)
CartesianIndex(index::Tuple{Vararg{Union{Integer, CartesianIndex}}}) = CartesianIndex(index...)
show(io::IO, i::CartesianIndex) = (print(io, "CartesianIndex"); show(io, i.I))
# length
length(::CartesianIndex{N}) where {N} = N
length(::Type{CartesianIndex{N}}) where {N} = N
# indexing
getindex(index::CartesianIndex, i::Integer) = index.I[i]
Base.get(A::AbstractArray, I::CartesianIndex, default) = get(A, I.I, default)
eltype(::Type{T}) where {T<:CartesianIndex} = eltype(fieldtype(T, :I))
# access to index tuple
Tuple(index::CartesianIndex) = index.I
Base.setindex(x::CartesianIndex,i,j) = CartesianIndex(Base.setindex(Tuple(x),i,j))
# equality
Base.:(==)(a::CartesianIndex{N}, b::CartesianIndex{N}) where N = a.I == b.I
# zeros and ones
zero(::CartesianIndex{N}) where {N} = zero(CartesianIndex{N})
zero(::Type{CartesianIndex{N}}) where {N} = CartesianIndex(ntuple(x -> 0, Val(N)))
oneunit(::CartesianIndex{N}) where {N} = oneunit(CartesianIndex{N})
oneunit(::Type{CartesianIndex{N}}) where {N} = CartesianIndex(ntuple(x -> 1, Val(N)))
# arithmetic, min/max
@inline (-)(index::CartesianIndex{N}) where {N} =
CartesianIndex{N}(map(-, index.I))
@inline (+)(index1::CartesianIndex{N}, index2::CartesianIndex{N}) where {N} =
CartesianIndex{N}(map(+, index1.I, index2.I))
@inline (-)(index1::CartesianIndex{N}, index2::CartesianIndex{N}) where {N} =
CartesianIndex{N}(map(-, index1.I, index2.I))
@inline min(index1::CartesianIndex{N}, index2::CartesianIndex{N}) where {N} =
CartesianIndex{N}(map(min, index1.I, index2.I))
@inline max(index1::CartesianIndex{N}, index2::CartesianIndex{N}) where {N} =
CartesianIndex{N}(map(max, index1.I, index2.I))
@inline (*)(a::Integer, index::CartesianIndex{N}) where {N} = CartesianIndex{N}(map(x->a*x, index.I))
@inline (*)(index::CartesianIndex, a::Integer) = *(a,index)
# comparison
@inline isless(I1::CartesianIndex{N}, I2::CartesianIndex{N}) where {N} = _isless(0, I1.I, I2.I)
@inline function _isless(ret, I1::NTuple{N,Int}, I2::NTuple{N,Int}) where N
newret = ifelse(ret==0, icmp(I1[N], I2[N]), ret)
_isless(newret, Base.front(I1), Base.front(I2))
end
_isless(ret, ::Tuple{}, ::Tuple{}) = ifelse(ret==1, true, false)
icmp(a, b) = ifelse(isless(a,b), 1, ifelse(a==b, 0, -1))
# conversions
convert(::Type{T}, index::CartesianIndex{1}) where {T<:Number} = convert(T, index[1])
convert(::Type{T}, index::CartesianIndex) where {T<:Tuple} = convert(T, index.I)
# hashing
const cartindexhash_seed = UInt == UInt64 ? 0xd60ca92f8284b8b0 : 0xf2ea7c2e
function Base.hash(ci::CartesianIndex, h::UInt)
h += cartindexhash_seed
for i in ci.I
h = hash(i, h)
end
return h
end
# nextind and prevind with CartesianIndex
function Base.nextind(a::AbstractArray{<:Any,N}, i::CartesianIndex{N}) where {N}
iter = CartesianIndices(axes(a))
# might overflow
I = inc(i.I, first(iter).I, last(iter).I)
return I
end
function Base.prevind(a::AbstractArray{<:Any,N}, i::CartesianIndex{N}) where {N}
iter = CartesianIndices(axes(a))
# might underflow
I = dec(i.I, last(iter).I, first(iter).I)
return I
end
Base._ind2sub(t::Tuple, ind::CartesianIndex) = Tuple(ind)
# Iteration over the elements of CartesianIndex cannot be supported until its length can be inferred,
# see #23719
Base.iterate(::CartesianIndex) =
error("iteration is deliberately unsupported for CartesianIndex. Use `I` rather than `I...`, or use `Tuple(I)...`")
# Iteration
"""
CartesianIndices(sz::Dims) -> R
CartesianIndices((istart:istop, jstart:jstop, ...)) -> R
Define a region `R` spanning a multidimensional rectangular range
of integer indices. These are most commonly encountered in the
context of iteration, where `for I in R ... end` will return
[`CartesianIndex`](@ref) indices `I` equivalent to the nested loops
for j = jstart:jstop
for i = istart:istop
...
end
end
Consequently these can be useful for writing algorithms that
work in arbitrary dimensions.
CartesianIndices(A::AbstractArray) -> R
As a convenience, constructing a `CartesianIndices` from an array makes a
range of its indices.
# Examples
```jldoctest
julia> foreach(println, CartesianIndices((2, 2, 2)))
CartesianIndex(1, 1, 1)
CartesianIndex(2, 1, 1)
CartesianIndex(1, 2, 1)
CartesianIndex(2, 2, 1)
CartesianIndex(1, 1, 2)
CartesianIndex(2, 1, 2)
CartesianIndex(1, 2, 2)
CartesianIndex(2, 2, 2)
julia> CartesianIndices(fill(1, (2,3)))
2×3 CartesianIndices{2, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}}:
CartesianIndex(1, 1) CartesianIndex(1, 2) CartesianIndex(1, 3)
CartesianIndex(2, 1) CartesianIndex(2, 2) CartesianIndex(2, 3)
```
## Conversion between linear and cartesian indices
Linear index to cartesian index conversion exploits the fact that a
`CartesianIndices` is an `AbstractArray` and can be indexed linearly:
```jldoctest
julia> cartesian = CartesianIndices((1:3, 1:2))
3×2 CartesianIndices{2, Tuple{UnitRange{Int64}, UnitRange{Int64}}}:
CartesianIndex(1, 1) CartesianIndex(1, 2)
CartesianIndex(2, 1) CartesianIndex(2, 2)
CartesianIndex(3, 1) CartesianIndex(3, 2)
julia> cartesian[4]
CartesianIndex(1, 2)
```
## Broadcasting
`CartesianIndices` support broadcasting arithmetic (+ and -) with a `CartesianIndex`.
!!! compat "Julia 1.1"
Broadcasting of CartesianIndices requires at least Julia 1.1.
```jldoctest
julia> CIs = CartesianIndices((2:3, 5:6))
2×2 CartesianIndices{2, Tuple{UnitRange{Int64}, UnitRange{Int64}}}:
CartesianIndex(2, 5) CartesianIndex(2, 6)
CartesianIndex(3, 5) CartesianIndex(3, 6)
julia> CI = CartesianIndex(3, 4)
CartesianIndex(3, 4)
julia> CIs .+ CI
2×2 CartesianIndices{2, Tuple{UnitRange{Int64}, UnitRange{Int64}}}:
CartesianIndex(5, 9) CartesianIndex(5, 10)
CartesianIndex(6, 9) CartesianIndex(6, 10)
```
For cartesian to linear index conversion, see [`LinearIndices`](@ref).
"""
struct CartesianIndices{N,R<:NTuple{N,AbstractUnitRange{Int}}} <: AbstractArray{CartesianIndex{N},N}
indices::R
end
CartesianIndices(::Tuple{}) = CartesianIndices{0,typeof(())}(())
CartesianIndices(inds::NTuple{N,AbstractUnitRange{<:Integer}}) where {N} =
CartesianIndices(map(r->convert(AbstractUnitRange{Int}, r), inds))
CartesianIndices(index::CartesianIndex) = CartesianIndices(index.I)
CartesianIndices(sz::NTuple{N,<:Integer}) where {N} = CartesianIndices(map(Base.OneTo, sz))
CartesianIndices(inds::NTuple{N,Union{<:Integer,AbstractUnitRange{<:Integer}}}) where {N} =
CartesianIndices(map(i->first(i):last(i), inds))
CartesianIndices(A::AbstractArray) = CartesianIndices(axes(A))
"""
(:)(I::CartesianIndex, J::CartesianIndex)
Construct [`CartesianIndices`](@ref) from two `CartesianIndex`.
!!! compat "Julia 1.1"
This method requires at least Julia 1.1.
# Examples
```jldoctest
julia> I = CartesianIndex(2,1);
julia> J = CartesianIndex(3,3);
julia> I:J
2×3 CartesianIndices{2, Tuple{UnitRange{Int64}, UnitRange{Int64}}}:
CartesianIndex(2, 1) CartesianIndex(2, 2) CartesianIndex(2, 3)
CartesianIndex(3, 1) CartesianIndex(3, 2) CartesianIndex(3, 3)
```
"""
(:)(I::CartesianIndex{N}, J::CartesianIndex{N}) where N =
CartesianIndices(map((i,j) -> i:j, Tuple(I), Tuple(J)))
promote_rule(::Type{CartesianIndices{N,R1}}, ::Type{CartesianIndices{N,R2}}) where {N,R1,R2} =
CartesianIndices{N,Base.indices_promote_type(R1,R2)}
convert(::Type{Tuple{}}, R::CartesianIndices{0}) = ()
convert(::Type{NTuple{N,AbstractUnitRange{Int}}}, R::CartesianIndices{N}) where {N} =
R.indices
convert(::Type{NTuple{N,AbstractUnitRange}}, R::CartesianIndices{N}) where {N} =
convert(NTuple{N,AbstractUnitRange{Int}}, R)
convert(::Type{NTuple{N,UnitRange{Int}}}, R::CartesianIndices{N}) where {N} =
UnitRange{Int}.(convert(NTuple{N,AbstractUnitRange}, R))
convert(::Type{NTuple{N,UnitRange}}, R::CartesianIndices{N}) where {N} =
UnitRange.(convert(NTuple{N,AbstractUnitRange}, R))
convert(::Type{Tuple{Vararg{AbstractUnitRange{Int}}}}, R::CartesianIndices{N}) where {N} =
convert(NTuple{N,AbstractUnitRange{Int}}, R)
convert(::Type{Tuple{Vararg{AbstractUnitRange}}}, R::CartesianIndices) =
convert(Tuple{Vararg{AbstractUnitRange{Int}}}, R)
convert(::Type{Tuple{Vararg{UnitRange{Int}}}}, R::CartesianIndices{N}) where {N} =
convert(NTuple{N,UnitRange{Int}}, R)
convert(::Type{Tuple{Vararg{UnitRange}}}, R::CartesianIndices) =
convert(Tuple{Vararg{UnitRange{Int}}}, R)
convert(::Type{CartesianIndices{N,R}}, inds::CartesianIndices{N}) where {N,R} =
CartesianIndices(convert(R, inds.indices))
# equality
Base.:(==)(a::CartesianIndices{N}, b::CartesianIndices{N}) where N =
all(map(==, a.indices, b.indices))
Base.:(==)(a::CartesianIndices, b::CartesianIndices) = false
# AbstractArray implementation
Base.axes(iter::CartesianIndices{N,R}) where {N,R} = map(Base.axes1, iter.indices)
Base.IndexStyle(::Type{CartesianIndices{N,R}}) where {N,R} = IndexCartesian()
@inline function Base.getindex(iter::CartesianIndices{N,<:NTuple{N,Base.OneTo}}, I::Vararg{Int, N}) where {N}
@boundscheck checkbounds(iter, I...)
CartesianIndex(I)
end
@inline function Base.getindex(iter::CartesianIndices{N,R}, I::Vararg{Int, N}) where {N,R}
@boundscheck checkbounds(iter, I...)
CartesianIndex(I .- first.(Base.axes1.(iter.indices)) .+ first.(iter.indices))
end
ndims(R::CartesianIndices) = ndims(typeof(R))
ndims(::Type{CartesianIndices{N}}) where {N} = N
ndims(::Type{CartesianIndices{N,TT}}) where {N,TT} = N
eachindex(::IndexCartesian, A::AbstractArray) = CartesianIndices(axes(A))
@inline function eachindex(::IndexCartesian, A::AbstractArray, B::AbstractArray...)
axsA = axes(A)
Base._all_match_first(axes, axsA, B...) || Base.throw_eachindex_mismatch_indices(IndexCartesian(), axes(A), axes.(B)...)
CartesianIndices(axsA)
end
eltype(::Type{CartesianIndices{N}}) where {N} = CartesianIndex{N}
eltype(::Type{CartesianIndices{N,TT}}) where {N,TT} = CartesianIndex{N}
IteratorSize(::Type{<:CartesianIndices{N}}) where {N} = Base.HasShape{N}()
@inline function iterate(iter::CartesianIndices)
iterfirst, iterlast = first(iter), last(iter)
if any(map(>, iterfirst.I, iterlast.I))
return nothing
end
iterfirst, iterfirst
end
@inline function iterate(iter::CartesianIndices, state)
valid, I = __inc(state.I, first(iter).I, last(iter).I)
valid || return nothing
return CartesianIndex(I...), CartesianIndex(I...)
end
# increment & carry
@inline function inc(state, start, stop)
_, I = __inc(state, start, stop)
return CartesianIndex(I...)
end
# increment post check to avoid integer overflow
@inline __inc(::Tuple{}, ::Tuple{}, ::Tuple{}) = false, ()
@inline function __inc(state::Tuple{Int}, start::Tuple{Int}, stop::Tuple{Int})
valid = state[1] < stop[1]
return valid, (state[1]+1,)
end
@inline function __inc(state, start, stop)
if state[1] < stop[1]
return true, (state[1]+1, tail(state)...)
end
valid, I = __inc(tail(state), tail(start), tail(stop))
return valid, (start[1], I...)
end
# 0-d cartesian ranges are special-cased to iterate once and only once
iterate(iter::CartesianIndices{0}, done=false) = done ? nothing : (CartesianIndex(), true)
size(iter::CartesianIndices) = map(dimlength, first(iter).I, last(iter).I)
dimlength(start, stop) = stop-start+1
length(iter::CartesianIndices) = prod(size(iter))
first(iter::CartesianIndices) = CartesianIndex(map(first, iter.indices))
last(iter::CartesianIndices) = CartesianIndex(map(last, iter.indices))
# When used as indices themselves, CartesianIndices can simply become its tuple of ranges
@inline to_indices(A, inds, I::Tuple{CartesianIndices, Vararg{Any}}) =
to_indices(A, inds, (I[1].indices..., tail(I)...))
# but preserve CartesianIndices{0} as they consume a dimension.
@inline to_indices(A, inds, I::Tuple{CartesianIndices{0},Vararg{Any}}) =
(first(I), to_indices(A, inds, tail(I))...)
@inline function in(i::CartesianIndex{N}, r::CartesianIndices{N}) where {N}
_in(true, i.I, first(r).I, last(r).I)
end
_in(b, ::Tuple{}, ::Tuple{}, ::Tuple{}) = b
@inline _in(b, i, start, stop) = _in(b & (start[1] <= i[1] <= stop[1]), tail(i), tail(start), tail(stop))
simd_outer_range(iter::CartesianIndices{0}) = iter
function simd_outer_range(iter::CartesianIndices)
CartesianIndices(tail(iter.indices))
end
simd_inner_length(iter::CartesianIndices{0}, ::CartesianIndex) = 1
simd_inner_length(iter::CartesianIndices, I::CartesianIndex) = Base.length(iter.indices[1])
simd_index(iter::CartesianIndices{0}, ::CartesianIndex, I1::Int) = first(iter)
@inline function simd_index(iter::CartesianIndices, Ilast::CartesianIndex, I1::Int)
CartesianIndex((I1+first(iter.indices[1]), Ilast.I...))
end
# Split out the first N elements of a tuple
@inline function split(t, V::Val)
ref = ntuple(d->true, V) # create a reference tuple of length N
_split1(t, ref), _splitrest(t, ref)
end
@inline _split1(t, ref) = (t[1], _split1(tail(t), tail(ref))...)
@inline _splitrest(t, ref) = _splitrest(tail(t), tail(ref))
# exit either when we've exhausted the input or reference tuple
_split1(::Tuple{}, ::Tuple{}) = ()
_split1(::Tuple{}, ref) = ()
_split1(t, ::Tuple{}) = ()
_splitrest(::Tuple{}, ::Tuple{}) = ()
_splitrest(t, ::Tuple{}) = t
_splitrest(::Tuple{}, ref) = ()
@inline function split(I::CartesianIndex, V::Val)
i, j = split(I.I, V)
CartesianIndex(i), CartesianIndex(j)
end
function split(R::CartesianIndices, V::Val)
i, j = split(R.indices, V)
CartesianIndices(i), CartesianIndices(j)
end
# reversed CartesianIndices iteration
@inline function iterate(r::Reverse{<:CartesianIndices})
iterfirst, iterlast = last(r.itr), first(r.itr)
if any(map(<, iterfirst.I, iterlast.I))
return nothing
end
iterfirst, iterfirst
end
@inline function iterate(r::Reverse{<:CartesianIndices}, state)
valid, I = __dec(state.I, last(r.itr).I, first(r.itr).I)
valid || return nothing
return CartesianIndex(I...), CartesianIndex(I...)
end
# decrement & carry
@inline function dec(state, start, stop)
_, I = __dec(state, start, stop)
return CartesianIndex(I...)
end
# decrement post check to avoid integer overflow
@inline __dec(::Tuple{}, ::Tuple{}, ::Tuple{}) = false, ()
@inline function __dec(state::Tuple{Int}, start::Tuple{Int}, stop::Tuple{Int})
valid = state[1] > stop[1]
return valid, (state[1]-1,)
end
@inline function __dec(state, start, stop)
if state[1] > stop[1]
return true, (state[1]-1, tail(state)...)
end
valid, I = __dec(tail(state), tail(start), tail(stop))
return valid, (start[1], I...)
end
# 0-d cartesian ranges are special-cased to iterate once and only once
iterate(iter::Reverse{<:CartesianIndices{0}}, state=false) = state ? nothing : (CartesianIndex(), true)
Base.LinearIndices(inds::CartesianIndices{N,R}) where {N,R} = LinearIndices{N,R}(inds.indices)
# array operations
Base.intersect(a::CartesianIndices{N}, b::CartesianIndices{N}) where N =
CartesianIndices(intersect.(a.indices, b.indices))
# Views of reshaped CartesianIndices are used for partitions — ensure these are fast
const CartesianPartition{T<:CartesianIndex, P<:CartesianIndices, R<:ReshapedArray{T,1,P}} = SubArray{T,1,R,Tuple{UnitRange{Int}},false}
eltype(::Type{PartitionIterator{T}}) where {T<:ReshapedArrayLF} = SubArray{eltype(T), 1, T, Tuple{UnitRange{Int}}, true}
eltype(::Type{PartitionIterator{T}}) where {T<:ReshapedArray} = SubArray{eltype(T), 1, T, Tuple{UnitRange{Int}}, false}
Iterators.IteratorEltype(::Type{<:PartitionIterator{T}}) where {T<:ReshapedArray} = Iterators.IteratorEltype(T)
eltype(::Type{PartitionIterator{T}}) where {T<:OneTo} = UnitRange{eltype(T)}
eltype(::Type{PartitionIterator{T}}) where {T<:Union{UnitRange, StepRange, StepRangeLen, LinRange}} = T
Iterators.IteratorEltype(::Type{<:PartitionIterator{T}}) where {T<:Union{OneTo, UnitRange, StepRange, StepRangeLen, LinRange}} = Iterators.IteratorEltype(T)
@inline function iterate(iter::CartesianPartition)
isempty(iter) && return nothing
f = first(iter)
return (f, (f, 1))
end
@inline function iterate(iter::CartesianPartition, (state, n))
n >= length(iter) && return nothing
I = IteratorsMD.inc(state.I, first(iter.parent.parent).I, last(iter.parent.parent).I)
return I, (I, n+1)
end
@inline function simd_outer_range(iter::CartesianPartition)
# In general, the Cartesian Partition might start and stop in the middle of the outer
# dimensions — thus the outer range of a CartesianPartition is itself a
# CartesianPartition.
t = tail(iter.parent.parent.indices)
ci = CartesianIndices(t)
li = LinearIndices(t)
return @inbounds view(ci, li[tail(iter[1].I)...]:li[tail(iter[end].I)...])
end
function simd_outer_range(iter::CartesianPartition{CartesianIndex{2}})
# But for two-dimensional Partitions the above is just a simple one-dimensional range
# over the second dimension; we don't need to worry about non-rectangular staggers in
# higher dimensions.
return @inbounds CartesianIndices((iter[1][2]:iter[end][2],))
end
@inline function simd_inner_length(iter::CartesianPartition, I::CartesianIndex)
inner = iter.parent.parent.indices[1]
@inbounds fi = iter[1].I
@inbounds li = iter[end].I
inner_start = I.I == tail(fi) ? fi[1] : first(inner)
inner_end = I.I == tail(li) ? li[1] : last(inner)
return inner_end - inner_start + 1
end
@inline function simd_index(iter::CartesianPartition, Ilast::CartesianIndex, I1::Int)
# I1 is the 0-based distance from the first dimension's offest
offset = first(iter.parent.parent.indices[1]) # (this is 1 for 1-based arrays)
# In the first column we need to also add in the iter's starting point (branchlessly)
f = @inbounds iter[1]
startoffset = (Ilast.I == tail(f.I))*(f[1] - 1)
CartesianIndex((I1 + offset + startoffset, Ilast.I...))
end
end # IteratorsMD
using .IteratorsMD
## Bounds-checking with CartesianIndex
# Disallow linear indexing with CartesianIndex
function checkbounds(::Type{Bool}, A::AbstractArray, i::Union{CartesianIndex, AbstractArray{<:CartesianIndex}})
@_inline_meta
checkbounds_indices(Bool, axes(A), (i,))
end
@inline checkbounds_indices(::Type{Bool}, ::Tuple{}, I::Tuple{CartesianIndex,Vararg{Any}}) =
checkbounds_indices(Bool, (), (I[1].I..., tail(I)...))
@inline checkbounds_indices(::Type{Bool}, IA::Tuple{Any}, I::Tuple{CartesianIndex,Vararg{Any}}) =
checkbounds_indices(Bool, IA, (I[1].I..., tail(I)...))
@inline checkbounds_indices(::Type{Bool}, IA::Tuple, I::Tuple{CartesianIndex,Vararg{Any}}) =
checkbounds_indices(Bool, IA, (I[1].I..., tail(I)...))
# Indexing into Array with mixtures of Integers and CartesianIndices is
# extremely performance-sensitive. While the abstract fallbacks support this,
# codegen has extra support for SIMDification that sub2ind doesn't (yet) support
@propagate_inbounds getindex(A::Array, i1::Union{Integer, CartesianIndex}, I::Union{Integer, CartesianIndex}...) =
A[to_indices(A, (i1, I...))...]
@propagate_inbounds setindex!(A::Array, v, i1::Union{Integer, CartesianIndex}, I::Union{Integer, CartesianIndex}...) =
(A[to_indices(A, (i1, I...))...] = v; A)
# Support indexing with an array of CartesianIndex{N}s
# Here we try to consume N of the indices (if there are that many available)
# The first two simply handle ambiguities
@inline function checkbounds_indices(::Type{Bool}, ::Tuple{},
I::Tuple{AbstractArray{CartesianIndex{N}},Vararg{Any}}) where N
checkindex(Bool, (), I[1]) & checkbounds_indices(Bool, (), tail(I))
end
@inline function checkbounds_indices(::Type{Bool}, IA::Tuple{Any},
I::Tuple{AbstractArray{CartesianIndex{0}},Vararg{Any}})
checkbounds_indices(Bool, IA, tail(I))
end
@inline function checkbounds_indices(::Type{Bool}, IA::Tuple{Any},
I::Tuple{AbstractArray{CartesianIndex{N}},Vararg{Any}}) where N
checkindex(Bool, IA, I[1]) & checkbounds_indices(Bool, (), tail(I))
end
@inline function checkbounds_indices(::Type{Bool}, IA::Tuple,
I::Tuple{AbstractArray{CartesianIndex{N}},Vararg{Any}}) where N
IA1, IArest = IteratorsMD.split(IA, Val(N))
checkindex(Bool, IA1, I[1]) & checkbounds_indices(Bool, IArest, tail(I))
end
function checkindex(::Type{Bool}, inds::Tuple, I::AbstractArray{<:CartesianIndex})
b = true
for i in I
b &= checkbounds_indices(Bool, inds, (i,))
end
b
end
checkindex(::Type{Bool}, inds::Tuple, I::CartesianIndices) = all(checkindex.(Bool, inds, I.indices))
# combined count of all indices, including CartesianIndex and
# AbstractArray{CartesianIndex}
# rather than returning N, it returns an NTuple{N,Bool} so the result is inferrable
@inline index_ndims(i1, I...) = (true, index_ndims(I...)...)
@inline function index_ndims(i1::CartesianIndex, I...)
(map(x->true, i1.I)..., index_ndims(I...)...)
end
@inline function index_ndims(i1::AbstractArray{CartesianIndex{N}}, I...) where N
(ntuple(x->true, Val(N))..., index_ndims(I...)...)
end
index_ndims() = ()
# combined dimensionality of all indices
# rather than returning N, it returns an NTuple{N,Bool} so the result is inferrable
@inline index_dimsum(i1, I...) = (index_dimsum(I...)...,)
@inline index_dimsum(::Colon, I...) = (true, index_dimsum(I...)...)
@inline index_dimsum(::AbstractArray{Bool}, I...) = (true, index_dimsum(I...)...)
@inline function index_dimsum(::AbstractArray{<:Any,N}, I...) where N
(ntuple(x->true, Val(N))..., index_dimsum(I...)...)
end
index_dimsum() = ()
# Recursively compute the lengths of a list of indices, without dropping scalars
index_lengths() = ()
@inline index_lengths(::Real, rest...) = (1, index_lengths(rest...)...)
@inline index_lengths(A::AbstractArray, rest...) = (length(A), index_lengths(rest...)...)
# shape of array to create for getindex() with indices I, dropping scalars
# returns a Tuple{Vararg{AbstractUnitRange}} of indices
index_shape() = ()
@inline index_shape(::Real, rest...) = index_shape(rest...)
@inline index_shape(A::AbstractArray, rest...) = (axes(A)..., index_shape(rest...)...)
"""
LogicalIndex(mask)
The `LogicalIndex` type is a special vector that simply contains all indices I
where `mask[I]` is true. This specialized type does not support indexing
directly as doing so would require O(n) lookup time. `AbstractArray{Bool}` are
wrapped with `LogicalIndex` upon calling [`to_indices`](@ref).
"""
struct LogicalIndex{T, A<:AbstractArray{Bool}} <: AbstractVector{T}
mask::A
sum::Int
LogicalIndex{T,A}(mask::A) where {T,A<:AbstractArray{Bool}} = new(mask, count(mask))
end
LogicalIndex(mask::AbstractVector{Bool}) = LogicalIndex{Int, typeof(mask)}(mask)
LogicalIndex(mask::AbstractArray{Bool, N}) where {N} = LogicalIndex{CartesianIndex{N}, typeof(mask)}(mask)
LogicalIndex{Int}(mask::AbstractArray) = LogicalIndex{Int, typeof(mask)}(mask)
size(L::LogicalIndex) = (L.sum,)
length(L::LogicalIndex) = L.sum
collect(L::LogicalIndex) = [i for i in L]
show(io::IO, r::LogicalIndex) = print(io,collect(r))
print_array(io::IO, X::LogicalIndex) = print_array(io, collect(X))
# Iteration over LogicalIndex is very performance-critical, but it also must
# support arbitrary AbstractArray{Bool}s with both Int and CartesianIndex.
# Thus the iteration state contains an index iterator and its state. We also
# keep track of the count of elements since we already know how many there
# should be -- this way we don't need to look at future indices to check done.
@inline function iterate(L::LogicalIndex{Int})
r = LinearIndices(L.mask)
iterate(L, (1, r))
end
@inline function iterate(L::LogicalIndex{<:CartesianIndex})
r = CartesianIndices(axes(L.mask))
iterate(L, (1, r))
end
@propagate_inbounds function iterate(L::LogicalIndex, s)
# We're looking for the n-th true element, using iterator r at state i
n = s[1]
n > length(L) && return nothing
#unroll once to help inference, cf issue #29418
idx, i = iterate(tail(s)...)
s = (n+1, s[2], i)
L.mask[idx] && return (idx, s)
while true
idx, i = iterate(tail(s)...)
s = (n+1, s[2], i)
L.mask[idx] && return (idx, s)
end
end
# When wrapping a BitArray, lean heavily upon its internals.
@inline function iterate(L::Base.LogicalIndex{Int,<:BitArray})
L.sum == 0 && return nothing
Bc = L.mask.chunks
return iterate(L, (1, @inbounds Bc[1]))
end
@inline function iterate(L::Base.LogicalIndex{Int,<:BitArray}, s)
Bc = L.mask.chunks
i1, c = s
while c==0
i1 % UInt >= length(Bc) % UInt && return nothing
i1 += 1
@inbounds c = Bc[i1]
end
tz = trailing_zeros(c) + 1
c = _blsr(c)
return ((i1-1)<<6 + tz, (i1, c))
end
@inline checkbounds(::Type{Bool}, A::AbstractArray, I::LogicalIndex{<:Any,<:AbstractArray{Bool,1}}) =
eachindex(IndexLinear(), A) == eachindex(IndexLinear(), I.mask)
@inline checkbounds(::Type{Bool}, A::AbstractArray, I::LogicalIndex) = axes(A) == axes(I.mask)
@inline checkindex(::Type{Bool}, indx::AbstractUnitRange, I::LogicalIndex) = (indx,) == axes(I.mask)
checkindex(::Type{Bool}, inds::Tuple, I::LogicalIndex) = false
ensure_indexable(I::Tuple{}) = ()
@inline ensure_indexable(I::Tuple{Any, Vararg{Any}}) = (I[1], ensure_indexable(tail(I))...)
@inline ensure_indexable(I::Tuple{LogicalIndex, Vararg{Any}}) = (collect(I[1]), ensure_indexable(tail(I))...)
# In simple cases, we know that we don't need to use axes(A). Optimize those
# until Julia gets smart enough to elide the call on its own:
@inline to_indices(A, I::Tuple{Vararg{Union{Integer, CartesianIndex}}}) = to_indices(A, (), I)
# But some index types require more context spanning multiple indices
# CartesianIndexes are simple; they just splat out
@inline to_indices(A, inds, I::Tuple{CartesianIndex, Vararg{Any}}) =
to_indices(A, inds, (I[1].I..., tail(I)...))
# But for arrays of CartesianIndex, we just skip the appropriate number of inds
@inline function to_indices(A, inds, I::Tuple{AbstractArray{CartesianIndex{N}}, Vararg{Any}}) where N
_, indstail = IteratorsMD.split(inds, Val(N))
(to_index(A, I[1]), to_indices(A, indstail, tail(I))...)
end
# And boolean arrays behave similarly; they also skip their number of dimensions
@inline function to_indices(A, inds, I::Tuple{AbstractArray{Bool, N}, Vararg{Any}}) where N
_, indstail = IteratorsMD.split(inds, Val(N))
(to_index(A, I[1]), to_indices(A, indstail, tail(I))...)
end
# As an optimization, we allow trailing Array{Bool} and BitArray to be linear over trailing dimensions
@inline to_indices(A, inds, I::Tuple{Union{Array{Bool,N}, BitArray{N}}}) where {N} =
(_maybe_linear_logical_index(IndexStyle(A), A, I[1]),)
_maybe_linear_logical_index(::IndexStyle, A, i) = to_index(A, i)
_maybe_linear_logical_index(::IndexLinear, A, i) = LogicalIndex{Int}(i)
# Colons get converted to slices by `uncolon`
@inline to_indices(A, inds, I::Tuple{Colon, Vararg{Any}}) =
(uncolon(inds, I), to_indices(A, _maybetail(inds), tail(I))...)
const CI0 = Union{CartesianIndex{0}, AbstractArray{CartesianIndex{0}}}
uncolon(inds::Tuple{}, I::Tuple{Colon, Vararg{Any}}) = Slice(OneTo(1))
uncolon(inds::Tuple, I::Tuple{Colon, Vararg{Any}}) = Slice(inds[1])
### From abstractarray.jl: Internal multidimensional indexing definitions ###
getindex(x::Number, i::CartesianIndex{0}) = x
getindex(t::Tuple, i::CartesianIndex{1}) = getindex(t, i.I[1])
# These are not defined on directly on getindex to avoid
# ambiguities for AbstractArray subtypes. See the note in abstractarray.jl
@inline function _getindex(l::IndexStyle, A::AbstractArray, I::Union{Real, AbstractArray}...)
@boundscheck checkbounds(A, I...)
return _unsafe_getindex(l, _maybe_reshape(l, A, I...), I...)
end
# But we can speed up IndexCartesian arrays by reshaping them to the appropriate dimensionality:
_maybe_reshape(::IndexLinear, A::AbstractArray, I...) = A
_maybe_reshape(::IndexCartesian, A::AbstractVector, I...) = A
@inline _maybe_reshape(::IndexCartesian, A::AbstractArray, I...) = __maybe_reshape(A, index_ndims(I...))
@inline __maybe_reshape(A::AbstractArray{T,N}, ::NTuple{N,Any}) where {T,N} = A
@inline __maybe_reshape(A::AbstractArray, ::NTuple{N,Any}) where {N} = reshape(A, Val(N))
function _unsafe_getindex(::IndexStyle, A::AbstractArray, I::Vararg{Union{Real, AbstractArray}, N}) where N
# This is specifically not inlined to prevent excessive allocations in type unstable code
shape = index_shape(I...)
dest = similar(A, shape)
map(unsafe_length, axes(dest)) == map(unsafe_length, shape) || throw_checksize_error(dest, shape)
_unsafe_getindex!(dest, A, I...) # usually a generated function, don't allow it to impact inference result
return dest
end
function _generate_unsafe_getindex!_body(N::Int)
quote
@_inline_meta
D = eachindex(dest)
Dy = iterate(D)
@inbounds @nloops $N j d->I[d] begin
# This condition is never hit, but at the moment
# the optimizer is not clever enough to split the union without it
Dy === nothing && return dest
(idx, state) = Dy
dest[idx] = @ncall $N getindex src j
Dy = iterate(D, state)
end
return dest
end
end
# Always index with the exactly indices provided.
@generated function _unsafe_getindex!(dest::AbstractArray, src::AbstractArray, I::Vararg{Union{Real, AbstractArray}, N}) where N
_generate_unsafe_getindex!_body(N)
end
# manually written-out specializations for 1 and 2 arguments to save compile time
@eval function _unsafe_getindex!(dest::AbstractArray, src::AbstractArray, I::Vararg{Union{Real, AbstractArray},1})
$(_generate_unsafe_getindex!_body(1))
end
@eval function _unsafe_getindex!(dest::AbstractArray, src::AbstractArray, I::Vararg{Union{Real, AbstractArray},2})
$(_generate_unsafe_getindex!_body(2))
end
@noinline throw_checksize_error(A, sz) = throw(DimensionMismatch("output array is the wrong size; expected $sz, got $(size(A))"))
## setindex! ##
function _setindex!(l::IndexStyle, A::AbstractArray, x, I::Union{Real, AbstractArray}...)
@_inline_meta
@boundscheck checkbounds(A, I...)
_unsafe_setindex!(l, _maybe_reshape(l, A, I...), x, I...)
A
end
function _generate_unsafe_setindex!_body(N::Int)
quote
x′ = unalias(A, x)
@nexprs $N d->(I_d = unalias(A, I[d]))
idxlens = @ncall $N index_lengths I
@ncall $N setindex_shape_check x′ (d->idxlens[d])
Xy = iterate(x′)
@inbounds @nloops $N i d->I_d begin
# This is never reached, but serves as an assumption for
# the optimizer that it does not need to emit error paths
Xy === nothing && break
(val, state) = Xy
@ncall $N setindex! A val i
Xy = iterate(x′, state)
end
A
end
end
@generated function _unsafe_setindex!(::IndexStyle, A::AbstractArray, x, I::Vararg{Union{Real,AbstractArray}, N}) where N
_generate_unsafe_setindex!_body(N)
end
@eval function _unsafe_setindex!(::IndexStyle, A::AbstractArray, x, I::Vararg{Union{Real,AbstractArray},1})
$(_generate_unsafe_setindex!_body(1))
end
@eval function _unsafe_setindex!(::IndexStyle, A::AbstractArray, x, I::Vararg{Union{Real,AbstractArray},2})
$(_generate_unsafe_setindex!_body(2))
end
diff(a::AbstractVector) = diff(a, dims=1)
"""
diff(A::AbstractVector)
diff(A::AbstractArray; dims::Integer)
Finite difference operator on a vector or a multidimensional array `A`. In the
latter case the dimension to operate on needs to be specified with the `dims`
keyword argument.
!!! compat "Julia 1.1"
`diff` for arrays with dimension higher than 2 requires at least Julia 1.1.
# Examples
```jldoctest
julia> a = [2 4; 6 16]
2×2 Matrix{Int64}:
2 4
6 16
julia> diff(a, dims=2)
2×1 Matrix{Int64}:
2
10
julia> diff(vec(a))
3-element Vector{Int64}:
4
-2
12
```
"""
function diff(a::AbstractArray{T,N}; dims::Integer) where {T,N}
require_one_based_indexing(a)
1 <= dims <= N || throw(ArgumentError("dimension $dims out of range (1:$N)"))
r = axes(a)
r0 = ntuple(i -> i == dims ? UnitRange(1, last(r[i]) - 1) : UnitRange(r[i]), N)
r1 = ntuple(i -> i == dims ? UnitRange(2, last(r[i])) : UnitRange(r[i]), N)
return view(a, r1...) .- view(a, r0...)
end
function diff(r::AbstractRange{T}; dims::Integer=1) where {T}
dims == 1 || throw(ArgumentError("dimension $dims out of range (1:1)"))
return T[@inbounds r[i+1] - r[i] for i in firstindex(r):lastindex(r)-1]
end
### from abstractarray.jl
# In the common case where we have two views into the same parent, aliasing checks
# are _much_ easier and more important to get right
function mightalias(A::SubArray{T,<:Any,P}, B::SubArray{T,<:Any,P}) where {T,P}
if !_parentsmatch(A.parent, B.parent)
# We cannot do any better than the usual dataids check
return !_isdisjoint(dataids(A), dataids(B))
end
# Now we know that A.parent === B.parent. This means that the indices of A
# and B are the same length and indexing into the same dimensions. We can
# just walk through them and check for overlaps: O(ndims(A)). We must finally
# ensure that the indices don't alias with either parent
return _indicesmightoverlap(A.indices, B.indices) ||
!_isdisjoint(dataids(A.parent), _splatmap(dataids, B.indices)) ||
!_isdisjoint(dataids(B.parent), _splatmap(dataids, A.indices))
end
_parentsmatch(A::AbstractArray, B::AbstractArray) = A === B
# Two reshape(::Array)s of the same size aren't `===` because they have different headers
_parentsmatch(A::Array, B::Array) = pointer(A) == pointer(B) && size(A) == size(B)
_indicesmightoverlap(A::Tuple{}, B::Tuple{}) = true
_indicesmightoverlap(A::Tuple{}, B::Tuple) = error("malformed subarray")
_indicesmightoverlap(A::Tuple, B::Tuple{}) = error("malformed subarray")
# For ranges, it's relatively cheap to construct the intersection
@inline function _indicesmightoverlap(A::Tuple{AbstractRange, Vararg{Any}}, B::Tuple{AbstractRange, Vararg{Any}})
!isempty(intersect(A[1], B[1])) ? _indicesmightoverlap(tail(A), tail(B)) : false
end
# But in the common AbstractUnitRange case, there's an even faster shortcut
@inline function _indicesmightoverlap(A::Tuple{AbstractUnitRange, Vararg{Any}}, B::Tuple{AbstractUnitRange, Vararg{Any}})
max(first(A[1]),first(B[1])) <= min(last(A[1]),last(B[1])) ? _indicesmightoverlap(tail(A), tail(B)) : false
end
# And we can check scalars against each other and scalars against arrays quite easily
@inline _indicesmightoverlap(A::Tuple{Real, Vararg{Any}}, B::Tuple{Real, Vararg{Any}}) =
A[1] == B[1] ? _indicesmightoverlap(tail(A), tail(B)) : false
@inline _indicesmightoverlap(A::Tuple{Real, Vararg{Any}}, B::Tuple{AbstractArray, Vararg{Any}}) =
A[1] in B[1] ? _indicesmightoverlap(tail(A), tail(B)) : false
@inline _indicesmightoverlap(A::Tuple{AbstractArray, Vararg{Any}}, B::Tuple{Real, Vararg{Any}}) =
B[1] in A[1] ? _indicesmightoverlap(tail(A), tail(B)) : false
# And small arrays are quick, too
@inline function _indicesmightoverlap(A::Tuple{AbstractArray, Vararg{Any}}, B::Tuple{AbstractArray, Vararg{Any}})
if length(A[1]) == 1
return A[1][1] in B[1] ? _indicesmightoverlap(tail(A), tail(B)) : false
elseif length(B[1]) == 1
return B[1][1] in A[1] ? _indicesmightoverlap(tail(A), tail(B)) : false
else
# But checking larger arrays requires O(m*n) and is too much work
return true
end
end
# And in general, checking the intersection is too much work
_indicesmightoverlap(A::Tuple{Any, Vararg{Any}}, B::Tuple{Any, Vararg{Any}}) = true
"""
fill!(A, x)
Fill array `A` with the value `x`. If `x` is an object reference, all elements will refer to
the same object. `fill!(A, Foo())` will return `A` filled with the result of evaluating
`Foo()` once.
# Examples
```jldoctest
julia> A = zeros(2,3)
2×3 Matrix{Float64}:
0.0 0.0 0.0
0.0 0.0 0.0
julia> fill!(A, 2.)
2×3 Matrix{Float64}:
2.0 2.0 2.0
2.0 2.0 2.0
julia> a = [1, 1, 1]; A = fill!(Vector{Vector{Int}}(undef, 3), a); a[1] = 2; A
3-element Vector{Vector{Int64}}:
[2, 1, 1]
[2, 1, 1]
[2, 1, 1]
julia> x = 0; f() = (global x += 1; x); fill!(Vector{Int}(undef, 3), f())
3-element Vector{Int64}:
1
1
1
```
"""
function fill!(A::AbstractArray{T}, x) where T
xT = convert(T, x)
for I in eachindex(A)
@inbounds A[I] = xT
end
A
end
function copyto!(dest::AbstractArray{T1,N}, Rdest::CartesianIndices{N},
src::AbstractArray{T2,N}, Rsrc::CartesianIndices{N}) where {T1,T2,N}
isempty(Rdest) && return dest
if size(Rdest) != size(Rsrc)
throw(ArgumentError("source and destination must have same size (got $(size(Rsrc)) and $(size(Rdest)))"))
end
checkbounds(dest, first(Rdest))
checkbounds(dest, last(Rdest))
checkbounds(src, first(Rsrc))
checkbounds(src, last(Rsrc))
src′ = unalias(dest, src)
ΔI = first(Rdest) - first(Rsrc)
if @generated
quote
@nloops $N i (n->Rsrc.indices[n]) begin
@inbounds @nref($N,dest,n->i_n+ΔI[n]) = @nref($N,src′,i)
end
end
else
for I in Rsrc
@inbounds dest[I + ΔI] = src′[I]
end
end
dest
end