-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathhigherorderfns.jl
1108 lines (1049 loc) · 54.7 KB
/
higherorderfns.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is a part of Julia. License is MIT: https://julialang.org/license
module HigherOrderFns
# This module provides higher order functions specialized for sparse arrays,
# particularly map[!]/broadcast[!] for SparseVectors and SparseMatrixCSCs at present.
import Base: map, map!, broadcast, copy, copyto!
using Base: front, tail, to_shape
using ..SparseArrays: SparseVector, SparseMatrixCSC, AbstractSparseVector,
AbstractSparseMatrix, AbstractSparseArray, indtype, nnz, nzrange
using Base.Broadcast: BroadcastStyle, Broadcasted, flatten
using LinearAlgebra
# This module is organized as follows:
# (0) Define BroadcastStyle rules and convenience types for dispatch
# (1) Define a common interface to SparseVectors and SparseMatrixCSCs sufficient for
# map[!]/broadcast[!]'s purposes. The methods below are written against this interface.
# (2) Define entry points for map[!] (short children of _map_[not]zeropres!).
# (3) Define entry points for broadcast[!] (short children of _broadcast_[not]zeropres!).
# (4) Define _map_[not]zeropres! specialized for a single (input) sparse vector/matrix.
# (5) Define _map_[not]zeropres! specialized for a pair of (input) sparse vectors/matrices.
# (6) Define general _map_[not]zeropres! capable of handling >2 (input) sparse vectors/matrices.
# (7) Define _broadcast_[not]zeropres! specialized for a single (input) sparse vector/matrix.
# (8) Define _broadcast_[not]zeropres! specialized for a pair of (input) sparse vectors/matrices.
# (9) Define general _broadcast_[not]zeropres! capable of handling >2 (input) sparse vectors/matrices.
# (10) Define broadcast methods handling combinations of broadcast scalars and sparse vectors/matrices.
# (11) Define broadcast[!] methods handling combinations of scalars, sparse vectors/matrices,
# structured matrices, and one- and two-dimensional Arrays.
# (12) Define map[!] methods handling combinations of sparse and structured matrices.
# (0) BroadcastStyle rules and convenience types for dispatch
SparseVecOrMat = Union{SparseVector,SparseMatrixCSC}
# broadcast container type promotion for combinations of sparse arrays and other types
struct SparseVecStyle <: Broadcast.AbstractArrayStyle{1} end
struct SparseMatStyle <: Broadcast.AbstractArrayStyle{2} end
Broadcast.BroadcastStyle(::Type{<:SparseVector}) = SparseVecStyle()
Broadcast.BroadcastStyle(::Type{<:SparseMatrixCSC}) = SparseMatStyle()
const SPVM = Union{SparseVecStyle,SparseMatStyle}
# SparseVecStyle handles 0-1 dimensions, SparseMatStyle 0-2 dimensions.
# SparseVecStyle promotes to SparseMatStyle for 2 dimensions.
# Fall back to DefaultArrayStyle for higher dimensionality.
SparseVecStyle(::Val{0}) = SparseVecStyle()
SparseVecStyle(::Val{1}) = SparseVecStyle()
SparseVecStyle(::Val{2}) = SparseMatStyle()
SparseVecStyle(::Val{N}) where N = Broadcast.DefaultArrayStyle{N}()
SparseMatStyle(::Val{0}) = SparseMatStyle()
SparseMatStyle(::Val{1}) = SparseMatStyle()
SparseMatStyle(::Val{2}) = SparseMatStyle()
SparseMatStyle(::Val{N}) where N = Broadcast.DefaultArrayStyle{N}()
Broadcast.BroadcastStyle(::SparseMatStyle, ::SparseVecStyle) = SparseMatStyle()
# Tuples promote to dense
Broadcast.BroadcastStyle(::SparseVecStyle, ::Broadcast.Style{Tuple}) = Broadcast.DefaultArrayStyle{1}()
Broadcast.BroadcastStyle(::SparseMatStyle, ::Broadcast.Style{Tuple}) = Broadcast.DefaultArrayStyle{2}()
struct PromoteToSparse <: Broadcast.AbstractArrayStyle{2} end
PromoteToSparse(::Val{0}) = PromoteToSparse()
PromoteToSparse(::Val{1}) = PromoteToSparse()
PromoteToSparse(::Val{2}) = PromoteToSparse()
PromoteToSparse(::Val{N}) where N = Broadcast.DefaultArrayStyle{N}()
const StructuredMatrix = Union{Diagonal,Bidiagonal,Tridiagonal,SymTridiagonal}
Broadcast.BroadcastStyle(::Type{<:Adjoint{T,<:Union{SparseVector,SparseMatrixCSC}} where T}) = PromoteToSparse()
Broadcast.BroadcastStyle(::Type{<:Transpose{T,<:Union{SparseVector,SparseMatrixCSC}} where T}) = PromoteToSparse()
Broadcast.BroadcastStyle(s::SPVM, ::Broadcast.AbstractArrayStyle{0}) = s
Broadcast.BroadcastStyle(s::SPVM, ::Broadcast.DefaultArrayStyle{0}) = s
Broadcast.BroadcastStyle(::SPVM, ::Broadcast.DefaultArrayStyle{1}) = PromoteToSparse()
Broadcast.BroadcastStyle(::SPVM, ::Broadcast.DefaultArrayStyle{2}) = PromoteToSparse()
Broadcast.BroadcastStyle(::SPVM, ::LinearAlgebra.StructuredMatrixStyle{<:StructuredMatrix}) = PromoteToSparse()
Broadcast.BroadcastStyle(::PromoteToSparse, ::LinearAlgebra.StructuredMatrixStyle{<:StructuredMatrix}) = PromoteToSparse()
Broadcast.BroadcastStyle(::PromoteToSparse, ::SPVM) = PromoteToSparse()
Broadcast.BroadcastStyle(::PromoteToSparse, ::Broadcast.Style{Tuple}) = Broadcast.DefaultArrayStyle{2}()
# FIXME: currently sparse broadcasts are only well-tested on known array types, while any AbstractArray
# could report itself as a DefaultArrayStyle().
# See https://github.com/JuliaLang/julia/pull/23939#pullrequestreview-72075382 for more details
is_supported_sparse_broadcast() = true
is_supported_sparse_broadcast(::AbstractArray, rest...) = false
is_supported_sparse_broadcast(::AbstractSparseArray, rest...) = is_supported_sparse_broadcast(rest...)
is_supported_sparse_broadcast(::StructuredMatrix, rest...) = is_supported_sparse_broadcast(rest...)
is_supported_sparse_broadcast(::Array, rest...) = is_supported_sparse_broadcast(rest...)
is_supported_sparse_broadcast(t::Union{Transpose, Adjoint}, rest...) = is_supported_sparse_broadcast(t.parent, rest...)
is_supported_sparse_broadcast(x, rest...) = axes(x) === () && is_supported_sparse_broadcast(rest...)
is_supported_sparse_broadcast(x::Ref, rest...) = is_supported_sparse_broadcast(rest...)
# Dispatch on broadcast operations by number of arguments
const Broadcasted0{Style<:Union{Nothing,BroadcastStyle},Axes,F} =
Broadcasted{Style,Axes,F,Tuple{}}
const SpBroadcasted1{Style<:SPVM,Axes,F,Args<:Tuple{SparseVecOrMat}} =
Broadcasted{Style,Axes,F,Args}
const SpBroadcasted2{Style<:SPVM,Axes,F,Args<:Tuple{SparseVecOrMat,SparseVecOrMat}} =
Broadcasted{Style,Axes,F,Args}
# (1) The definitions below provide a common interface to sparse vectors and matrices
# sufficient for the purposes of map[!]/broadcast[!]. This interface treats sparse vectors
# as n-by-one sparse matrices which, though technically incorrect, is how broacast[!] views
# sparse vectors in practice.
@inline numrows(A::SparseVector) = A.n
@inline numrows(A::SparseMatrixCSC) = A.m
@inline numcols(A::SparseVector) = 1
@inline numcols(A::SparseMatrixCSC) = A.n
# numrows and numcols respectively yield size(A, 1) and size(A, 2), but avoid a branch
@inline columns(A::SparseVector) = 1
@inline columns(A::SparseMatrixCSC) = 1:A.n
@inline colrange(A::SparseVector, j) = 1:length(A.nzind)
@inline colrange(A::SparseMatrixCSC, j) = nzrange(A, j)
@inline colstartind(A::SparseVector, j) = one(indtype(A))
@inline colboundind(A::SparseVector, j) = convert(indtype(A), length(A.nzind) + 1)
@inline colstartind(A::SparseMatrixCSC, j) = A.colptr[j]
@inline colboundind(A::SparseMatrixCSC, j) = A.colptr[j + 1]
@inline storedinds(A::SparseVector) = A.nzind
@inline storedinds(A::SparseMatrixCSC) = A.rowval
@inline storedvals(A::SparseVecOrMat) = A.nzval
@inline setcolptr!(A::SparseVector, j, val) = val
@inline setcolptr!(A::SparseMatrixCSC, j, val) = A.colptr[j] = val
function trimstorage!(A::SparseVecOrMat, maxstored)
resize!(storedinds(A), maxstored)
resize!(storedvals(A), maxstored)
return maxstored
end
function expandstorage!(A::SparseVecOrMat, maxstored)
length(storedinds(A)) < maxstored && resize!(storedinds(A), maxstored)
length(storedvals(A)) < maxstored && resize!(storedvals(A), maxstored)
return maxstored
end
# (2) map[!] entry points
map(f::Tf, A::SparseVector) where {Tf} = _noshapecheck_map(f, A)
map(f::Tf, A::SparseMatrixCSC) where {Tf} = _noshapecheck_map(f, A)
map(f::Tf, A::SparseMatrixCSC, Bs::Vararg{SparseMatrixCSC,N}) where {Tf,N} =
(_checksameshape(A, Bs...); _noshapecheck_map(f, A, Bs...))
map(f::Tf, A::SparseVecOrMat, Bs::Vararg{SparseVecOrMat,N}) where {Tf,N} =
(_checksameshape(A, Bs...); _noshapecheck_map(f, A, Bs...))
map!(f::Tf, C::SparseMatrixCSC, A::SparseMatrixCSC, Bs::Vararg{SparseMatrixCSC,N}) where {Tf,N} =
(_checksameshape(C, A, Bs...); _noshapecheck_map!(f, C, A, Bs...))
map!(f::Tf, C::SparseVecOrMat, A::SparseVecOrMat, Bs::Vararg{SparseVecOrMat,N}) where {Tf,N} =
(_checksameshape(C, A, Bs...); _noshapecheck_map!(f, C, A, Bs...))
function _noshapecheck_map!(f::Tf, C::SparseVecOrMat, A::SparseVecOrMat, Bs::Vararg{SparseVecOrMat,N}) where {Tf,N}
fofzeros = f(_zeros_eltypes(A, Bs...)...)
fpreszeros = _iszero(fofzeros)
return fpreszeros ? _map_zeropres!(f, C, A, Bs...) :
_map_notzeropres!(f, fofzeros, C, A, Bs...)
end
function _noshapecheck_map(f::Tf, A::SparseVecOrMat, Bs::Vararg{SparseVecOrMat,N}) where {Tf,N}
fofzeros = f(_zeros_eltypes(A, Bs...)...)
fpreszeros = _iszero(fofzeros)
maxnnzC = fpreszeros ? min(length(A), _sumnnzs(A, Bs...)) : length(A)
entrytypeC = Base.Broadcast.combine_eltypes(f, (A, Bs...))
indextypeC = _promote_indtype(A, Bs...)
C = _allocres(size(A), indextypeC, entrytypeC, maxnnzC)
return fpreszeros ? _map_zeropres!(f, C, A, Bs...) :
_map_notzeropres!(f, fofzeros, C, A, Bs...)
end
# (3) broadcast[!] entry points
copy(bc::SpBroadcasted1) = _noshapecheck_map(bc.f, bc.args[1])
@inline function copyto!(C::SparseVecOrMat, bc::Broadcasted0{Nothing})
isempty(C) && return _finishempty!(C)
f = bc.f
fofnoargs = f()
if _iszero(fofnoargs) # f() is zero, so empty C
trimstorage!(C, 0)
_finishempty!(C)
else # f() is nonzero, so densify C and fill with independent calls to f()
_densestructure!(C)
storedvals(C)[1] = fofnoargs
broadcast!(f, view(storedvals(C), 2:length(storedvals(C))))
end
return C
end
function _diffshape_broadcast(f::Tf, A::SparseVecOrMat, Bs::Vararg{SparseVecOrMat,N}) where {Tf,N}
fofzeros = f(_zeros_eltypes(A, Bs...)...)
fpreszeros = _iszero(fofzeros)
indextypeC = _promote_indtype(A, Bs...)
entrytypeC = Base.Broadcast.combine_eltypes(f, (A, Bs...))
shapeC = to_shape(Base.Broadcast.combine_axes(A, Bs...))
maxnnzC = fpreszeros ? _checked_maxnnzbcres(shapeC, A, Bs...) : _densennz(shapeC)
C = _allocres(shapeC, indextypeC, entrytypeC, maxnnzC)
return fpreszeros ? _broadcast_zeropres!(f, C, A, Bs...) :
_broadcast_notzeropres!(f, fofzeros, C, A, Bs...)
end
# helper functions for map[!]/broadcast[!] entry points (and related methods below)
@inline _sumnnzs(A) = nnz(A)
@inline _sumnnzs(A, Bs...) = nnz(A) + _sumnnzs(Bs...)
@inline _iszero(x) = x == 0
@inline _iszero(x::Number) = Base.iszero(x)
@inline _iszero(x::AbstractArray) = Base.iszero(x)
@inline _zeros_eltypes(A) = (zero(eltype(A)),)
@inline _zeros_eltypes(A, Bs...) = (zero(eltype(A)), _zeros_eltypes(Bs...)...)
@inline _promote_indtype(A) = indtype(A)
@inline _promote_indtype(A, Bs...) = promote_type(indtype(A), _promote_indtype(Bs...))
@inline _aresameshape(A) = true
@inline _aresameshape(A, B) = size(A) == size(B)
@inline _aresameshape(A, B, Cs...) = _aresameshape(A, B) ? _aresameshape(B, Cs...) : false
@inline _checksameshape(As...) = _aresameshape(As...) || throw(DimensionMismatch("argument shapes must match"))
@inline _all_args_isa(t::Tuple{Any}, ::Type{T}) where T = isa(t[1], T)
@inline _all_args_isa(t::Tuple{Any,Vararg{Any}}, ::Type{T}) where T = isa(t[1], T) & _all_args_isa(tail(t), T)
@inline _all_args_isa(t::Tuple{Broadcasted}, ::Type{T}) where T = _all_args_isa(t[1].args, T)
@inline _all_args_isa(t::Tuple{Broadcasted,Vararg{Any}}, ::Type{T}) where T = _all_args_isa(t[1].args, T) & _all_args_isa(tail(t), T)
@inline _densennz(shape::NTuple{1}) = shape[1]
@inline _densennz(shape::NTuple{2}) = shape[1] * shape[2]
_maxnnzfrom(shape::NTuple{1}, A) = nnz(A) * div(shape[1], A.n)
_maxnnzfrom(shape::NTuple{2}, A::SparseVector) = nnz(A) * div(shape[1], A.n) * shape[2]
_maxnnzfrom(shape::NTuple{2}, A::SparseMatrixCSC) = nnz(A) * div(shape[1], A.m) * div(shape[2], A.n)
@inline _maxnnzfrom_each(shape, ::Tuple{}) = ()
@inline _maxnnzfrom_each(shape, As) = (_maxnnzfrom(shape, first(As)), _maxnnzfrom_each(shape, tail(As))...)
@inline _unchecked_maxnnzbcres(shape, As::Tuple) = min(_densennz(shape), sum(_maxnnzfrom_each(shape, As)))
@inline _unchecked_maxnnzbcres(shape, As...) = _unchecked_maxnnzbcres(shape, As)
@inline _checked_maxnnzbcres(shape::NTuple{1}, As...) = shape[1] != 0 ? _unchecked_maxnnzbcres(shape, As) : 0
@inline _checked_maxnnzbcres(shape::NTuple{2}, As...) = shape[1] != 0 && shape[2] != 0 ? _unchecked_maxnnzbcres(shape, As) : 0
@inline function _allocres(shape::NTuple{1}, indextype, entrytype, maxnnz)
storedinds = Vector{indextype}(undef, maxnnz)
storedvals = Vector{entrytype}(undef, maxnnz)
return SparseVector(shape..., storedinds, storedvals)
end
@inline function _allocres(shape::NTuple{2}, indextype, entrytype, maxnnz)
pointers = Vector{indextype}(undef, shape[2] + 1)
storedinds = Vector{indextype}(undef, maxnnz)
storedvals = Vector{entrytype}(undef, maxnnz)
return SparseMatrixCSC(shape..., pointers, storedinds, storedvals)
end
# (4) _map_zeropres!/_map_notzeropres! specialized for a single sparse vector/matrix
"Stores only the nonzero entries of `map(f, Array(A))` in `C`."
function _map_zeropres!(f::Tf, C::SparseVecOrMat, A::SparseVecOrMat) where Tf
spaceC::Int = min(length(storedinds(C)), length(storedvals(C)))
Ck = 1
@inbounds for j in columns(C)
setcolptr!(C, j, Ck)
for Ak in colrange(A, j)
Cx = f(storedvals(A)[Ak])
if !_iszero(Cx)
Ck > spaceC && (spaceC = expandstorage!(C, Ck + nnz(A) - (Ak - 1)))
storedinds(C)[Ck] = storedinds(A)[Ak]
storedvals(C)[Ck] = Cx
Ck += 1
end
end
end
@inbounds setcolptr!(C, numcols(C) + 1, Ck)
trimstorage!(C, Ck - 1)
return C
end
"""
Densifies `C`, storing `fillvalue` in place of each unstored entry in `A` and
`f(A[i])`/`f(A[i,j])` in place of each stored entry `A[i]`/`A[i,j]` in `A`.
"""
function _map_notzeropres!(f::Tf, fillvalue, C::SparseVecOrMat, A::SparseVecOrMat) where Tf
# Build dense matrix structure in C, expanding storage if necessary
_densestructure!(C)
# Populate values
fill!(storedvals(C), fillvalue)
@inbounds for (j, jo) in zip(columns(C), _densecoloffsets(C))
for Ak in colrange(A, j)
Cx = f(storedvals(A)[Ak])
Cx != fillvalue && (storedvals(C)[jo + storedinds(A)[Ak]] = Cx)
end
end
# NOTE: Combining the fill! above into the loop above to avoid multiple sweeps over /
# nonsequential access of storedvals(C) does not appear to improve performance.
return C
end
# helper functions for these methods and some of those below
@inline _densecoloffsets(A::SparseVector) = 0
@inline _densecoloffsets(A::SparseMatrixCSC) = 0:A.m:(A.m*(A.n - 1))
function _densestructure!(A::SparseVector)
expandstorage!(A, A.n)
copyto!(A.nzind, 1:A.n)
return A
end
function _densestructure!(A::SparseMatrixCSC)
nnzA = A.m * A.n
expandstorage!(A, nnzA)
copyto!(A.colptr, 1:A.m:(nnzA + 1))
for k in _densecoloffsets(A)
copyto!(A.rowval, k + 1, 1:A.m)
end
return A
end
# (5) _map_zeropres!/_map_notzeropres! specialized for a pair of sparse vectors/matrices
function _map_zeropres!(f::Tf, C::SparseVecOrMat, A::SparseVecOrMat, B::SparseVecOrMat) where Tf
spaceC::Int = min(length(storedinds(C)), length(storedvals(C)))
rowsentinelA = convert(indtype(A), numrows(C) + 1)
rowsentinelB = convert(indtype(B), numrows(C) + 1)
Ck = 1
@inbounds for j in columns(C)
setcolptr!(C, j, Ck)
Ak, stopAk = colstartind(A, j), colboundind(A, j)
Bk, stopBk = colstartind(B, j), colboundind(B, j)
Ai = Ak < stopAk ? storedinds(A)[Ak] : rowsentinelA
Bi = Bk < stopBk ? storedinds(B)[Bk] : rowsentinelB
while true
if Ai == Bi
Ai == rowsentinelA && break # column complete
Cx, Ci::indtype(C) = f(storedvals(A)[Ak], storedvals(B)[Bk]), Ai
Ak += oneunit(Ak); Ai = Ak < stopAk ? storedinds(A)[Ak] : rowsentinelA
Bk += oneunit(Bk); Bi = Bk < stopBk ? storedinds(B)[Bk] : rowsentinelB
elseif Ai < Bi
Cx, Ci = f(storedvals(A)[Ak], zero(eltype(B))), Ai
Ak += oneunit(Ak); Ai = Ak < stopAk ? storedinds(A)[Ak] : rowsentinelA
else # Bi < Ai
Cx, Ci = f(zero(eltype(A)), storedvals(B)[Bk]), Bi
Bk += oneunit(Bk); Bi = Bk < stopBk ? storedinds(B)[Bk] : rowsentinelB
end
# NOTE: The ordering of the conditional chain above impacts which matrices this
# method performs best for. In the map situation (arguments have same shape, and
# likely same or similar stored entry pattern), the Ai == Bi and termination
# cases are equally or more likely than the Ai < Bi and Bi < Ai cases. Hence
# the ordering of the conditional chain above differs from that in the
# corresponding broadcast code (below).
if !_iszero(Cx)
Ck > spaceC && (spaceC = expandstorage!(C, Ck + (nnz(A) - (Ak - 1)) + (nnz(B) - (Bk - 1))))
storedinds(C)[Ck] = Ci
storedvals(C)[Ck] = Cx
Ck += 1
end
end
end
@inbounds setcolptr!(C, numcols(C) + 1, Ck)
trimstorage!(C, Ck - 1)
return C
end
function _map_notzeropres!(f::Tf, fillvalue, C::SparseVecOrMat, A::SparseVecOrMat, B::SparseVecOrMat) where Tf
# Build dense matrix structure in C, expanding storage if necessary
_densestructure!(C)
# Populate values
fill!(storedvals(C), fillvalue)
# NOTE: Combining this fill! into the loop below to avoid multiple sweeps over /
# nonsequential access of storedvals(C) does not appear to improve performance.
rowsentinelA = convert(indtype(A), numrows(A) + 1)
rowsentinelB = convert(indtype(B), numrows(B) + 1)
@inbounds for (j, jo) in zip(columns(C), _densecoloffsets(C))
Ak, stopAk = colstartind(A, j), colboundind(A, j)
Bk, stopBk = colstartind(B, j), colboundind(B, j)
Ai = Ak < stopAk ? storedinds(A)[Ak] : rowsentinelA
Bi = Bk < stopBk ? storedinds(B)[Bk] : rowsentinelB
while true
if Ai == Bi
Ai == rowsentinelA && break # column complete
Cx, Ci::indtype(C) = f(storedvals(A)[Ak], storedvals(B)[Bk]), Ai
Ak += oneunit(Ak); Ai = Ak < stopAk ? storedinds(A)[Ak] : rowsentinelA
Bk += oneunit(Bk); Bi = Bk < stopBk ? storedinds(B)[Bk] : rowsentinelB
elseif Ai < Bi
Cx, Ci = f(storedvals(A)[Ak], zero(eltype(B))), Ai
Ak += oneunit(Ak); Ai = Ak < stopAk ? storedinds(A)[Ak] : rowsentinelA
else # Bi < Ai
Cx, Ci = f(zero(eltype(A)), storedvals(B)[Bk]), Bi
Bk += oneunit(Bk); Bi = Bk < stopBk ? storedinds(B)[Bk] : rowsentinelB
end
Cx != fillvalue && (storedvals(C)[jo + Ci] = Cx)
end
end
return C
end
# (6) _map_zeropres!/_map_notzeropres! for more than two sparse matrices / vectors
function _map_zeropres!(f::Tf, C::SparseVecOrMat, As::Vararg{SparseVecOrMat,N}) where {Tf,N}
spaceC::Int = min(length(storedinds(C)), length(storedvals(C)))
rowsentinel = numrows(C) + 1
Ck = 1
stopks = _colstartind_all(1, As)
@inbounds for j in columns(C)
setcolptr!(C, j, Ck)
ks = stopks
stopks = _colboundind_all(j, As)
rows = _rowforind_all(rowsentinel, ks, stopks, As)
activerow = min(rows...)
while activerow < rowsentinel
vals, ks, rows = _fusedupdate_all(rowsentinel, activerow, rows, ks, stopks, As)
Cx = f(vals...)
if !_iszero(Cx)
Ck > spaceC && (spaceC = expandstorage!(C, Ck + min(length(C), _sumnnzs(As...)) - (sum(ks) - N)))
storedinds(C)[Ck] = activerow
storedvals(C)[Ck] = Cx
Ck += 1
end
activerow = min(rows...)
end
end
@inbounds setcolptr!(C, numcols(C) + 1, Ck)
trimstorage!(C, Ck - 1)
return C
end
function _map_notzeropres!(f::Tf, fillvalue, C::SparseVecOrMat, As::Vararg{SparseVecOrMat,N}) where {Tf,N}
# Build dense matrix structure in C, expanding storage if necessary
_densestructure!(C)
# Populate values
fill!(storedvals(C), fillvalue)
# NOTE: Combining this fill! into the loop below to avoid multiple sweeps over /
# nonsequential access of C.nzval does not appear to improve performance.
rowsentinel = numrows(C) + 1
stopks = _colstartind_all(1, As)
@inbounds for (j, jo) in zip(columns(C), _densecoloffsets(C))
ks = stopks
stopks = _colboundind_all(j, As)
rows = _rowforind_all(rowsentinel, ks, stopks, As)
activerow = min(rows...)
while activerow < rowsentinel
vals, ks, rows = _fusedupdate_all(rowsentinel, activerow, rows, ks, stopks, As)
Cx = f(vals...)
Cx != fillvalue && (storedvals(C)[jo + activerow] = Cx)
activerow = min(rows...)
end
end
return C
end
# helper methods for map/map! methods just above
@inline _colstartind(j, A) = colstartind(A, j)
@inline _colstartind_all(j, ::Tuple{}) = ()
@inline _colstartind_all(j, As) = (
_colstartind(j, first(As)),
_colstartind_all(j, tail(As))...)
@inline _colboundind(j, A) = colboundind(A, j)
@inline _colboundind_all(j, ::Tuple{}) = ()
@inline _colboundind_all(j, As) = (
_colboundind(j, first(As)),
_colboundind_all(j, tail(As))...)
@inline _rowforind(rowsentinel, k, stopk, A) =
k < stopk ? storedinds(A)[k] : convert(indtype(A), rowsentinel)
@inline _rowforind_all(rowsentinel, ::Tuple{}, ::Tuple{}, ::Tuple{}) = ()
@inline _rowforind_all(rowsentinel, ks, stopks, As) = (
_rowforind(rowsentinel, first(ks), first(stopks), first(As)),
_rowforind_all(rowsentinel, tail(ks), tail(stopks), tail(As))...)
@inline function _fusedupdate(rowsentinel, activerow, row, k, stopk, A)
# returns (val, nextk, nextrow)
if row == activerow
nextk = k + oneunit(k)
(storedvals(A)[k], nextk, (nextk < stopk ? storedinds(A)[nextk] : oftype(row, rowsentinel)))
else
(zero(eltype(A)), k, row)
end
end
@inline _fusedupdate_all(rowsentinel, activerow, ::Tuple{}, ::Tuple{}, ::Tuple{}, ::Tuple{}) = ((#=vals=#), (#=nextks=#), (#=nextrows=#))
@inline function _fusedupdate_all(rowsentinel, activerow, rows, ks, stopks, As)
val, nextk, nextrow = _fusedupdate(rowsentinel, activerow, first(rows), first(ks), first(stopks), first(As))
vals, nextks, nextrows = _fusedupdate_all(rowsentinel, activerow, tail(rows), tail(ks), tail(stopks), tail(As))
return ((val, vals...), (nextk, nextks...), (nextrow, nextrows...))
end
# (7) _broadcast_zeropres!/_broadcast_notzeropres! specialized for a single (input) sparse vector/matrix
function _broadcast_zeropres!(f::Tf, C::SparseVecOrMat, A::SparseVecOrMat) where Tf
isempty(C) && return _finishempty!(C)
spaceC::Int = min(length(storedinds(C)), length(storedvals(C)))
# C and A cannot have the same shape, as we directed that case to map in broadcast's
# entry point; here we need efficiently handle only heterogeneous C-A combinations where
# one or both of C and A has at least one singleton dimension.
#
# We first divide the cases into two groups: those in which the input argument does not
# expand vertically, and those in which the input argument expands vertically.
#
# Cases without vertical expansion
Ck = 1
if numrows(A) == numrows(C)
@inbounds for j in columns(C)
setcolptr!(C, j, Ck)
bccolrangejA = numcols(A) == 1 ? colrange(A, 1) : colrange(A, j)
for Ak in bccolrangejA
Cx = f(storedvals(A)[Ak])
if !_iszero(Cx)
Ck > spaceC && (spaceC = expandstorage!(C, _unchecked_maxnnzbcres(size(C), A)))
storedinds(C)[Ck] = storedinds(A)[Ak]
storedvals(C)[Ck] = Cx
Ck += 1
end
end
end
# Cases with vertical expansion
else # numrows(A) != numrows(C) (=> numrows(A) == 1)
@inbounds for j in columns(C)
setcolptr!(C, j, Ck)
Ak, stopAk = numcols(A) == 1 ? (colstartind(A, 1), colboundind(A, 1)) : (colstartind(A, j), colboundind(A, j))
Ax = Ak < stopAk ? storedvals(A)[Ak] : zero(eltype(A))
fofAx = f(Ax)
# if fofAx is zero, then either A's jth column is empty, or A's jth column
# contains a nonzero value x but f(Ax) is nonetheless zero, so we need store
# nothing in C's jth column. if to the contrary fofAx is nonzero, then we must
# densely populate C's jth column with fofAx.
if !_iszero(fofAx)
for Ci::indtype(C) in 1:numrows(C)
Ck > spaceC && (spaceC = expandstorage!(C, _unchecked_maxnnzbcres(size(C), A)))
storedinds(C)[Ck] = Ci
storedvals(C)[Ck] = fofAx
Ck += 1
end
end
end
end
@inbounds setcolptr!(C, numcols(C) + 1, Ck)
trimstorage!(C, Ck - 1)
return C
end
function _broadcast_notzeropres!(f::Tf, fillvalue, C::SparseVecOrMat, A::SparseVecOrMat) where Tf
# For information on this code, see comments in similar code in _broadcast_zeropres! above
# Build dense matrix structure in C, expanding storage if necessary
_densestructure!(C)
# Populate values
fill!(storedvals(C), fillvalue)
# Cases without vertical expansion
if numrows(A) == numrows(C)
@inbounds for (j, jo) in zip(columns(C), _densecoloffsets(C))
bccolrangejA = numcols(A) == 1 ? colrange(A, 1) : colrange(A, j)
for Ak in bccolrangejA
Cx, Ci = f(storedvals(A)[Ak]), storedinds(A)[Ak]
Cx != fillvalue && (storedvals(C)[jo + Ci] = Cx)
end
end
# Cases with vertical expansion
else # numrows(A) != numrows(C) (=> numrows(A) == 1)
svA, svC = storedvals(A), storedvals(C)
@inbounds for (j, jo) in zip(columns(C), _densecoloffsets(C))
Ak, stopAk = numcols(A) == 1 ? (colstartind(A, 1), colboundind(A, 1)) : (colstartind(A, j), colboundind(A, j))
Ax = Ak < stopAk ? svA[Ak] : zero(eltype(A))
fofAx = f(Ax)
if fofAx != fillvalue
for i in (jo + 1):(jo + numrows(C))
svC[i] = fofAx
end
end
end
end
return C
end
# (8) _broadcast_zeropres!/_broadcast_notzeropres! specialized for a pair of (input) sparse vectors/matrices
function _broadcast_zeropres!(f::Tf, C::SparseVecOrMat, A::SparseVecOrMat, B::SparseVecOrMat) where Tf
isempty(C) && return _finishempty!(C)
spaceC::Int = min(length(storedinds(C)), length(storedvals(C)))
rowsentinelA = convert(indtype(A), numrows(C) + 1)
rowsentinelB = convert(indtype(B), numrows(C) + 1)
# C, A, and B cannot all have the same shape, as we directed that case to map in broadcast's
# entry point; here we need efficiently handle only heterogeneous combinations of mats/vecs
# with no singleton dimensions, one singleton dimension, and two singleton dimensions.
# Cases involving objects with two singleton dimensions should be rare and optimizing
# that case complicates the code appreciably, so we largely ignore that case's
# performance below.
#
# We first divide the cases into two groups: those in which neither input argument
# expands vertically, and those in which at least one argument expands vertically.
#
# NOTE: Placing the loops over columns outside the conditional chain segregating
# argument shape combinations eliminates some code replication but unfortunately
# hurts performance appreciably in some cases.
#
# Cases without vertical expansion
Ck = 1
if numrows(A) == numrows(B) == numrows(C)
@inbounds for j in columns(C)
setcolptr!(C, j, Ck)
Ak, stopAk = numcols(A) == 1 ? (colstartind(A, 1), colboundind(A, 1)) : (colstartind(A, j), colboundind(A, j))
Bk, stopBk = numcols(B) == 1 ? (colstartind(B, 1), colboundind(B, 1)) : (colstartind(B, j), colboundind(B, j))
# Restructuring this k/stopk code to avoid unnecessary colptr retrievals does
# not improve performance signicantly. Leave in this less complex form.
Ai = Ak < stopAk ? storedinds(A)[Ak] : rowsentinelA
Bi = Bk < stopBk ? storedinds(B)[Bk] : rowsentinelB
while true
if Ai != Bi
if Ai < Bi
Cx, Ci = f(storedvals(A)[Ak], zero(eltype(B))), Ai
Ak += oneunit(Ak); Ai = Ak < stopAk ? storedinds(A)[Ak] : rowsentinelA
else # Ai > Bi
Cx, Ci = f(zero(eltype(A)), storedvals(B)[Bk]), Bi
Bk += oneunit(Bk); Bi = Bk < stopBk ? storedinds(B)[Bk] : rowsentinelB
end
elseif #= Ai == Bi && =# Ai == rowsentinelA
break # column complete
else #= Ai == Bi != rowsentinel =#
Cx, Ci::indtype(C) = f(storedvals(A)[Ak], storedvals(B)[Bk]), Ai
Ak += oneunit(Ak); Ai = Ak < stopAk ? storedinds(A)[Ak] : rowsentinelA
Bk += oneunit(Bk); Bi = Bk < stopBk ? storedinds(B)[Bk] : rowsentinelB
end
# NOTE: The ordering of the conditional chain above impacts which matrices
# this method perform best for. In contrast to the map situation (arguments
# have same shape, and likely same or similar stored entry pattern), where
# the Ai == Bi and termination cases are equally or more likely than the
# Ai < Bi and Bi < Ai cases, in the broadcast situation (arguments have
# different shape, and likely largely disjoint expanded stored entry
# pattern) the Ai < Bi and Bi < Ai cases are equally or more likely than the
# Ai == Bi and termination cases. Hence the ordering of the conditional
# chain above differs from that in the corresponding map code.
if !_iszero(Cx)
Ck > spaceC && (spaceC = expandstorage!(C, _unchecked_maxnnzbcres(size(C), A, B)))
storedinds(C)[Ck] = Ci
storedvals(C)[Ck] = Cx
Ck += 1
end
end
end
# Cases with vertical expansion
elseif numrows(A) == numrows(B) == 1 # && numrows(C) != 1, vertically expand both A and B
@inbounds for j in columns(C)
setcolptr!(C, j, Ck)
Ak, stopAk = numcols(A) == 1 ? (colstartind(A, 1), colboundind(A, 1)) : (colstartind(A, j), colboundind(A, j))
Bk, stopBk = numcols(B) == 1 ? (colstartind(B, 1), colboundind(B, 1)) : (colstartind(B, j), colboundind(B, j))
Ax = Ak < stopAk ? storedvals(A)[Ak] : zero(eltype(A))
Bx = Bk < stopBk ? storedvals(B)[Bk] : zero(eltype(B))
Cx = f(Ax, Bx)
if !_iszero(Cx)
for Ci::indtype(C) in 1:numrows(C)
Ck > spaceC && (spaceC = expandstorage!(C, _unchecked_maxnnzbcres(size(C), A, B)))
storedinds(C)[Ck] = Ci
storedvals(C)[Ck] = Cx
Ck += 1
end
end
end
elseif numrows(A) == 1 # && numrows(B) == numrows(C) != 1 , vertically expand only A
@inbounds for j in columns(C)
setcolptr!(C, j, Ck)
Ak, stopAk = numcols(A) == 1 ? (colstartind(A, 1), colboundind(A, 1)) : (colstartind(A, j), colboundind(A, j))
Bk, stopBk = numcols(B) == 1 ? (colstartind(B, 1), colboundind(B, 1)) : (colstartind(B, j), colboundind(B, j))
Ax = Ak < stopAk ? storedvals(A)[Ak] : zero(eltype(A))
fvAzB = f(Ax, zero(eltype(B)))
if _iszero(fvAzB)
# either A's jth column is empty, or A's jth column contains a nonzero value
# Ax but f(Ax, zero(eltype(B))) is nonetheless zero, so we can scan through
# B's jth column without storing every entry in C's jth column
while Bk < stopBk
Cx = f(Ax, storedvals(B)[Bk])
if !_iszero(Cx)
Ck > spaceC && (spaceC = expandstorage!(C, _unchecked_maxnnzbcres(size(C), A, B)))
storedinds(C)[Ck] = storedinds(B)[Bk]
storedvals(C)[Ck] = Cx
Ck += 1
end
Bk += oneunit(Bk)
end
else
# A's jth column is nonempty and f(Ax, zero(eltype(B))) is not zero, so
# we must store (likely) every entry in C's jth column
Bi = Bk < stopBk ? storedinds(B)[Bk] : rowsentinelB
for Ci::indtype(C) in 1:numrows(C)
if Bi == Ci
Cx = f(Ax, storedvals(B)[Bk])
Bk += oneunit(Bk); Bi = Bk < stopBk ? storedinds(B)[Bk] : rowsentinelB
else
Cx = fvAzB
end
if !_iszero(Cx)
Ck > spaceC && (spaceC = expandstorage!(C, _unchecked_maxnnzbcres(size(C), A, B)))
storedinds(C)[Ck] = Ci
storedvals(C)[Ck] = Cx
Ck += 1
end
end
end
end
else # numrows(B) == 1 && numrows(A) == numrows(C) != 1, vertically expand only B
@inbounds for j in columns(C)
setcolptr!(C, j, Ck)
Ak, stopAk = numcols(A) == 1 ? (colstartind(A, 1), colboundind(A, 1)) : (colstartind(A, j), colboundind(A, j))
Bk, stopBk = numcols(B) == 1 ? (colstartind(B, 1), colboundind(B, 1)) : (colstartind(B, j), colboundind(B, j))
Bx = Bk < stopBk ? storedvals(B)[Bk] : zero(eltype(B))
fzAvB = f(zero(eltype(A)), Bx)
if _iszero(fzAvB)
# either B's jth column is empty, or B's jth column contains a nonzero value
# Bx but f(zero(eltype(A)), Bx) is nonetheless zero, so we can scan through
# A's jth column without storing every entry in C's jth column
while Ak < stopAk
Cx = f(storedvals(A)[Ak], Bx)
if !_iszero(Cx)
Ck > spaceC && (spaceC = expandstorage!(C, _unchecked_maxnnzbcres(size(C), A, B)))
storedinds(C)[Ck] = storedinds(A)[Ak]
storedvals(C)[Ck] = Cx
Ck += 1
end
Ak += oneunit(Ak)
end
else
# B's jth column is nonempty and f(zero(eltype(A)), Bx) is not zero, so
# we must store (likely) every entry in C's jth column
Ai = Ak < stopAk ? storedinds(A)[Ak] : rowsentinelA
for Ci::indtype(C) in 1:numrows(C)
if Ai == Ci
Cx = f(storedvals(A)[Ak], Bx)
Ak += oneunit(Ak); Ai = Ak < stopAk ? storedinds(A)[Ak] : rowsentinelA
else
Cx = fzAvB
end
if !_iszero(Cx)
Ck > spaceC && (spaceC = expandstorage!(C, _unchecked_maxnnzbcres(size(C), A, B)))
storedinds(C)[Ck] = Ci
storedvals(C)[Ck] = Cx
Ck += 1
end
end
end
end
end
@inbounds setcolptr!(C, numcols(C) + 1, Ck)
trimstorage!(C, Ck - 1)
return C
end
function _broadcast_notzeropres!(f::Tf, fillvalue, C::SparseVecOrMat, A::SparseVecOrMat, B::SparseVecOrMat) where Tf
# For information on this code, see comments in similar code in _broadcast_zeropres! above
# Build dense matrix structure in C, expanding storage if necessary
_densestructure!(C)
# Populate values
fill!(storedvals(C), fillvalue)
rowsentinelA = convert(indtype(A), numrows(C) + 1)
rowsentinelB = convert(indtype(B), numrows(C) + 1)
# Cases without vertical expansion
if numrows(A) == numrows(B) == numrows(C)
@inbounds for (j, jo) in zip(columns(C), _densecoloffsets(C))
Ak, stopAk = numcols(A) == 1 ? (colstartind(A, 1), colboundind(A, 1)) : (colstartind(A, j), colboundind(A, j))
Bk, stopBk = numcols(B) == 1 ? (colstartind(B, 1), colboundind(B, 1)) : (colstartind(B, j), colboundind(B, j))
Ai = Ak < stopAk ? storedinds(A)[Ak] : rowsentinelA
Bi = Bk < stopBk ? storedinds(B)[Bk] : rowsentinelB
while true
if Ai < Bi
Cx, Ci = f(storedvals(A)[Ak], zero(eltype(B))), Ai
Ak += oneunit(Ak); Ai = Ak < stopAk ? storedinds(A)[Ak] : rowsentinelA
elseif Ai > Bi
Cx, Ci = f(zero(eltype(A)), storedvals(B)[Bk]), Bi
Bk += oneunit(Bk); Bi = Bk < stopBk ? storedinds(B)[Bk] : rowsentinelB
elseif #= Ai == Bi && =# Ai == rowsentinelA
break # column complete
else #= Ai == Bi != rowsentinel =#
Cx, Ci::indtype(C) = f(storedvals(A)[Ak], storedvals(B)[Bk]), Ai
Ak += oneunit(Ak); Ai = Ak < stopAk ? storedinds(A)[Ak] : rowsentinelA
Bk += oneunit(Bk); Bi = Bk < stopBk ? storedinds(B)[Bk] : rowsentinelB
end
Cx != fillvalue && (storedvals(C)[jo + Ci] = Cx)
end
end
# Cases with vertical expansion
elseif numrows(A) == numrows(B) == 1 # && numrows(C) != 1, vertically expand both A and B
@inbounds for (j, jo) in zip(columns(C), _densecoloffsets(C))
Ak, stopAk = numcols(A) == 1 ? (colstartind(A, 1), colboundind(A, 1)) : (colstartind(A, j), colboundind(A, j))
Bk, stopBk = numcols(B) == 1 ? (colstartind(B, 1), colboundind(B, 1)) : (colstartind(B, j), colboundind(B, j))
Ax = Ak < stopAk ? storedvals(A)[Ak] : zero(eltype(A))
Bx = Bk < stopBk ? storedvals(B)[Bk] : zero(eltype(B))
Cx = f(Ax, Bx)
if Cx != fillvalue
for Ck::Int in (jo + 1):(jo + numrows(C))
storedvals(C)[Ck] = Cx
end
end
end
elseif numrows(A) == 1 # && numrows(B) == numrows(C) != 1, vertically expand only A
@inbounds for (j, jo) in zip(columns(C), _densecoloffsets(C))
Ak, stopAk = numcols(A) == 1 ? (colstartind(A, 1), colboundind(A, 1)) : (colstartind(A, j), colboundind(A, j))
Bk, stopBk = numcols(B) == 1 ? (colstartind(B, 1), colboundind(B, 1)) : (colstartind(B, j), colboundind(B, j))
Ax = Ak < stopAk ? storedvals(A)[Ak] : zero(eltype(A))
fvAzB = f(Ax, zero(eltype(B)))
if fvAzB == fillvalue
while Bk < stopBk
Cx = f(Ax, storedvals(B)[Bk])
Cx != fillvalue && (storedvals(C)[jo + storedinds(B)[Bk]] = Cx)
Bk += oneunit(Bk)
end
else
Bi = Bk < stopBk ? storedinds(B)[Bk] : rowsentinelB
for Ci::indtype(C) in 1:numrows(C)
if Bi == Ci
Cx = f(Ax, storedvals(B)[Bk])
Bk += oneunit(Bk); Bi = Bk < stopBk ? storedinds(B)[Bk] : rowsentinelB
else
Cx = fvAzB
end
Cx != fillvalue && (storedvals(C)[jo + Ci] = Cx)
end
end
end
else # numrows(B) == 1 && numrows(A) == numrows(C) != 1, vertically expand only B
@inbounds for (j, jo) in zip(columns(C), _densecoloffsets(C))
Ak, stopAk = numcols(A) == 1 ? (colstartind(A, 1), colboundind(A, 1)) : (colstartind(A, j), colboundind(A, j))
Bk, stopBk = numcols(B) == 1 ? (colstartind(B, 1), colboundind(B, 1)) : (colstartind(B, j), colboundind(B, j))
Bx = Bk < stopBk ? storedvals(B)[Bk] : zero(eltype(B))
fzAvB = f(zero(eltype(A)), Bx)
if fzAvB == fillvalue
while Ak < stopAk
Cx = f(storedvals(A)[Ak], Bx)
Cx != fillvalue && (storedvals(C)[jo + storedinds(A)[Ak]] = Cx)
Ak += oneunit(Ak)
end
else
Ai = Ak < stopAk ? storedinds(A)[Ak] : rowsentinelA
for Ci::indtype(C) in 1:numrows(C)
if Ai == Ci
Cx = f(storedvals(A)[Ak], Bx)
Ak += oneunit(Ak); Ai = Ak < stopAk ? storedinds(A)[Ak] : rowsentinelA
else
Cx = fzAvB
end
Cx != fillvalue && (storedvals(C)[jo + Ci] = Cx)
end
end
end
end
return C
end
_finishempty!(C::SparseVector) = C
_finishempty!(C::SparseMatrixCSC) = (fill!(C.colptr, 1); C)
# (9) _broadcast_zeropres!/_broadcast_notzeropres! for more than two (input) sparse vectors/matrices
function _broadcast_zeropres!(f::Tf, C::SparseVecOrMat, As::Vararg{SparseVecOrMat,N}) where {Tf,N}
isempty(C) && return _finishempty!(C)
spaceC::Int = min(length(storedinds(C)), length(storedvals(C)))
expandsverts = _expandsvert_all(C, As)
expandshorzs = _expandshorz_all(C, As)
rowsentinel = numrows(C) + 1
Ck = 1
@inbounds for j in columns(C)
setcolptr!(C, j, Ck)
ks = _startindforbccol_all(j, expandshorzs, As)
stopks = _stopindforbccol_all(j, expandshorzs, As)
# Neither fusing ks and stopks construction, nor restructuring them to avoid repeated
# colptr lookups, improves performance significantly. So keep the less complex approach here.
isemptys = _isemptycol_all(ks, stopks)
defargs = _defargforcol_all(j, isemptys, expandsverts, ks, As)
rows = _initrowforcol_all(j, rowsentinel, isemptys, expandsverts, ks, As)
defaultCx = f(defargs...)
activerow = min(rows...)
if _iszero(defaultCx) # zero-preserving column scan
while activerow < rowsentinel
args, ks, rows = _fusedupdatebc_all(rowsentinel, activerow, rows, defargs, ks, stopks, As)
Cx = f(args...)
if !_iszero(Cx)
Ck > spaceC && (spaceC = expandstorage!(C, _unchecked_maxnnzbcres(size(C), As)))
storedinds(C)[Ck] = activerow
storedvals(C)[Ck] = Cx
Ck += 1
end
activerow = min(rows...)
end
else # zero-non-preserving column scan
for Ci in 1:numrows(C)
if Ci == activerow
args, ks, rows = _fusedupdatebc_all(rowsentinel, activerow, rows, defargs, ks, stopks, As)
Cx = f(args...)
activerow = min(rows...)
else
Cx = defaultCx
end
if !_iszero(Cx)
Ck > spaceC && (spaceC = expandstorage!(C, _unchecked_maxnnzbcres(size(C), As)))
storedinds(C)[Ck] = Ci
storedvals(C)[Ck] = Cx
Ck += 1
end
end
end
end
@inbounds setcolptr!(C, numcols(C) + 1, Ck)
trimstorage!(C, Ck - 1)
return C
end
function _broadcast_notzeropres!(f::Tf, fillvalue, C::SparseVecOrMat, As::Vararg{SparseVecOrMat,N}) where {Tf,N}
isempty(C) && return _finishempty!(C)
# Build dense matrix structure in C, expanding storage if necessary
_densestructure!(C)
# Populate values
fill!(storedvals(C), fillvalue)
expandsverts = _expandsvert_all(C, As)
expandshorzs = _expandshorz_all(C, As)
rowsentinel = numrows(C) + 1
@inbounds for (j, jo) in zip(columns(C), _densecoloffsets(C))
ks = _startindforbccol_all(j, expandshorzs, As)
stopks = _stopindforbccol_all(j, expandshorzs, As)
# Neither fusing ks and stopks construction, nor restructuring them to avoid repeated
# colptr lookups, improves performance significantly. So keep the less complex approach here.
isemptys = _isemptycol_all(ks, stopks)
defargs = _defargforcol_all(j, isemptys, expandsverts, ks, As)
rows = _initrowforcol_all(j, rowsentinel, isemptys, expandsverts, ks, As)
defaultCx = f(defargs...)
activerow = min(rows...)
if defaultCx == fillvalue # fillvalue-preserving column scan
while activerow < rowsentinel
args, ks, rows = _fusedupdatebc_all(rowsentinel, activerow, rows, defargs, ks, stopks, As)
Cx = f(args...)
Cx != fillvalue && (storedvals(C)[jo + activerow] = Cx)
activerow = min(rows...)
end
else # fillvalue-non-preserving column scan
for Ci in 1:numrows(C)
if Ci == activerow
args, ks, rows = _fusedupdatebc_all(rowsentinel, activerow, rows, defargs, ks, stopks, As)
Cx = f(args...)
activerow = min(rows...)
else
Cx = defaultCx
end
Cx != fillvalue && (storedvals(C)[jo + Ci] = Cx)
end
end
end
return C
end
# helper method for broadcast/broadcast! methods just above
@inline _expandsvert(C, A) = numrows(A) != numrows(C)
@inline _expandsvert_all(C, ::Tuple{}) = ()
@inline _expandsvert_all(C, As) = (_expandsvert(C, first(As)), _expandsvert_all(C, tail(As))...)
@inline _expandshorz(C, A) = numcols(A) != numcols(C)
@inline _expandshorz_all(C, ::Tuple{}) = ()
@inline _expandshorz_all(C, As) = (_expandshorz(C, first(As)), _expandshorz_all(C, tail(As))...)
@inline _startindforbccol(j, expandshorz, A) = expandshorz ? colstartind(A, 1) : colstartind(A, j)
@inline _startindforbccol_all(j, ::Tuple{}, ::Tuple{}) = ()
@inline _startindforbccol_all(j, expandshorzs, As) = (
_startindforbccol(j, first(expandshorzs), first(As)),
_startindforbccol_all(j, tail(expandshorzs), tail(As))...)
@inline _stopindforbccol(j, expandshorz, A) = expandshorz ? colboundind(A, 1) : colboundind(A, j)
@inline _stopindforbccol_all(j, ::Tuple{}, ::Tuple{}) = ()
@inline _stopindforbccol_all(j, expandshorzs, As) = (
_stopindforbccol(j, first(expandshorzs), first(As)),
_stopindforbccol_all(j, tail(expandshorzs), tail(As))...)
@inline _isemptycol(k, stopk) = k == stopk
@inline _isemptycol_all(::Tuple{}, ::Tuple{}) = ()
@inline _isemptycol_all(ks, stopks) = (
_isemptycol(first(ks), first(stopks)),
_isemptycol_all(tail(ks), tail(stopks))...)
@inline _initrowforcol(j, rowsentinel, isempty, expandsvert, k, A) =
expandsvert || isempty ? convert(indtype(A), rowsentinel) : storedinds(A)[k]
@inline _initrowforcol_all(j, rowsentinel, ::Tuple{}, ::Tuple{}, ::Tuple{}, ::Tuple{}) = ()
@inline _initrowforcol_all(j, rowsentinel, isemptys, expandsverts, ks, As) = (
_initrowforcol(j, rowsentinel, first(isemptys), first(expandsverts), first(ks), first(As)),
_initrowforcol_all(j, rowsentinel, tail(isemptys), tail(expandsverts), tail(ks), tail(As))...)
@inline _defargforcol(j, isempty, expandsvert, k, A) =
expandsvert && !isempty ? storedvals(A)[k] : zero(eltype(A))
@inline _defargforcol_all(j, ::Tuple{}, ::Tuple{}, ::Tuple{}, ::Tuple{}) = ()
@inline _defargforcol_all(j, isemptys, expandsverts, ks, As) = (
_defargforcol(j, first(isemptys), first(expandsverts), first(ks), first(As)),
_defargforcol_all(j, tail(isemptys), tail(expandsverts), tail(ks), tail(As))...)
@inline function _fusedupdatebc(rowsentinel, activerow, row, defarg, k, stopk, A)
# returns (val, nextk, nextrow)
if row == activerow
nextk = k + oneunit(k)
(storedvals(A)[k], nextk, (nextk < stopk ? storedinds(A)[nextk] : oftype(row, rowsentinel)))
else
(defarg, k, row)
end
end
@inline _fusedupdatebc_all(rowsent, activerow, ::Tuple{}, ::Tuple{}, ::Tuple{}, ::Tuple{}, ::Tuple{}) = ((#=vals=#), (#=nextks=#), (#=nextrows=#))
@inline function _fusedupdatebc_all(rowsentinel, activerow, rows, defargs, ks, stopks, As)
val, nextk, nextrow = _fusedupdatebc(rowsentinel, activerow, first(rows), first(defargs), first(ks), first(stopks), first(As))
vals, nextks, nextrows = _fusedupdatebc_all(rowsentinel, activerow, tail(rows), tail(defargs), tail(ks), tail(stopks), tail(As))
return ((val, vals...), (nextk, nextks...), (nextrow, nextrows...))
end
# (10) broadcast over combinations of broadcast scalars and sparse vectors/matrices
# broadcast entry points for combinations of sparse arrays and other (scalar) types
@inline function copy(bc::Broadcasted{<:SPVM})
bcf = flatten(bc)
return _copy(bcf.f, bcf.args...)
end
_copy(f, args::SparseVector...) = _shapecheckbc(f, args...)
_copy(f, args::SparseMatrixCSC...) = _shapecheckbc(f, args...)
_copy(f, args::SparseVecOrMat...) = _diffshape_broadcast(f, args...)
# Otherwise, we incorporate scalars into the function and re-dispatch
function _copy(f, args...)
parevalf, passedargstup = capturescalars(f, args)
return _copy(parevalf, passedargstup...)
end
function _shapecheckbc(f, args...)
_aresameshape(args...) ? _noshapecheck_map(f, args...) : _diffshape_broadcast(f, args...)
end
@inline function copyto!(dest::SparseVecOrMat, bc::Broadcasted{<:SPVM})
if bc.f === identity && bc isa SpBroadcasted1 && Base.axes(dest) == (A = bc.args[1]; Base.axes(A))
return copyto!(dest, A)
end
bcf = flatten(bc)
As = map(arg->Base.unalias(dest, arg), bcf.args)
return _copyto!(bcf.f, dest, As...)
end
@inline function _copyto!(f, dest, As::SparseVecOrMat...)
_aresameshape(dest, As...) && return _noshapecheck_map!(f, dest, As...)
Base.Broadcast.check_broadcast_axes(axes(dest), As...)
fofzeros = f(_zeros_eltypes(As...)...)
if _iszero(fofzeros)
return _broadcast_zeropres!(f, dest, As...)
else
return _broadcast_notzeropres!(f, fofzeros, dest, As...)
end
end