-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathirrationals.jl
137 lines (113 loc) · 4.69 KB
/
irrationals.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# This file is a part of Julia. License is MIT: http://julialang.org/license
## general machinery for irrational mathematical constants
immutable Irrational{sym} <: Real end
show{sym}(io::IO, x::Irrational{sym}) = print(io, "$sym = $(string(float(x))[1:15])...")
promote_rule{s}(::Type{Irrational{s}}, ::Type{Float32}) = Float32
promote_rule{s,t}(::Type{Irrational{s}}, ::Type{Irrational{t}}) = Float64
promote_rule{s,T<:Number}(::Type{Irrational{s}}, ::Type{T}) = promote_type(Float64,T)
convert(::Type{AbstractFloat}, x::Irrational) = Float64(x)
convert(::Type{Float16}, x::Irrational) = Float16(Float32(x))
convert{T<:Real}(::Type{Complex{T}}, x::Irrational) = convert(Complex{T}, convert(T,x))
convert{T<:Integer}(::Type{Rational{T}}, x::Irrational) = convert(Rational{T}, Float64(x))
@generated function call{T<:Union{Float32,Float64},s}(t::Type{T},c::Irrational{s},r::RoundingMode)
f = T(big(c()),r())
:($f)
end
=={s}(::Irrational{s}, ::Irrational{s}) = true
==(::Irrational, ::Irrational) = false
# Irrationals, by definition, can't have a finite representation equal them exactly
==(x::Irrational, y::Real) = false
==(x::Real, y::Irrational) = false
# Irrational vs AbstractFloat
<(x::Irrational, y::Float64) = Float64(x,RoundUp) <= y
<(x::Float64, y::Irrational) = x <= Float64(y,RoundDown)
<(x::Irrational, y::Float32) = Float32(x,RoundUp) <= y
<(x::Float32, y::Irrational) = x <= Float32(y,RoundDown)
<(x::Irrational, y::Float16) = Float32(x,RoundUp) <= y
<(x::Float16, y::Irrational) = x <= Float32(y,RoundDown)
<(x::Irrational, y::BigFloat) = with_bigfloat_precision(precision(y)+32) do
big(x) < y
end
<(x::BigFloat, y::Irrational) = with_bigfloat_precision(precision(x)+32) do
x < big(y)
end
<=(x::Irrational,y::AbstractFloat) = x < y
<=(x::AbstractFloat,y::Irrational) = x < y
# Irrational vs Rational
@generated function <{T}(x::Irrational, y::Rational{T})
bx = big(x())
bx < 0 && T <: Unsigned && return true
rx = rationalize(T,bx,tol=0)
rx < bx ? :($rx < y) : :($rx <= y)
end
@generated function <{T}(x::Rational{T}, y::Irrational)
by = big(y())
by < 0 && T <: Unsigned && return false
ry = rationalize(T,by,tol=0)
ry < by ? :(x <= $ry) : :(x < $ry)
end
<(x::Irrational, y::Rational{BigInt}) = big(x) < y
<(x::Rational{BigInt}, y::Irrational) = x < big(y)
<=(x::Irrational,y::Rational) = x < y
<=(x::Rational,y::Irrational) = x < y
hash(x::Irrational, h::UInt) = 3*object_id(x) - h
-(x::Irrational) = -Float64(x)
for op in Symbol[:+, :-, :*, :/, :^]
@eval $op(x::Irrational, y::Irrational) = $op(Float64(x),Float64(y))
end
macro irrational(sym, val, def)
esym = esc(sym)
qsym = esc(Expr(:quote, sym))
bigconvert = isa(def,Symbol) ? quote
function Base.convert(::Type{BigFloat}, ::Irrational{$qsym})
c = BigFloat()
ccall(($(string("mpfr_const_", def)), :libmpfr),
Cint, (Ptr{BigFloat}, Int32),
&c, MPFR.ROUNDING_MODE[end])
return c
end
end : quote
Base.convert(::Type{BigFloat}, ::Irrational{$qsym}) = $(esc(def))
end
quote
const $esym = Irrational{$qsym}()
$bigconvert
Base.convert(::Type{Float64}, ::Irrational{$qsym}) = $val
Base.convert(::Type{Float32}, ::Irrational{$qsym}) = $(Float32(val))
@assert isa(big($esym), BigFloat)
@assert Float64($esym) == Float64(big($esym))
@assert Float32($esym) == Float32(big($esym))
end
end
big(x::Irrational) = convert(BigFloat,x)
## specific irriational mathematical constants
@irrational π 3.14159265358979323846 pi
@irrational e 2.71828182845904523536 exp(big(1))
@irrational γ 0.57721566490153286061 euler
@irrational catalan 0.91596559417721901505 catalan
@irrational φ 1.61803398874989484820 (1+sqrt(big(5)))/2
# aliases
const pi = π
const eu = e
const eulergamma = γ
const golden = φ
# special behaviors
# use exp for e^x or e.^x, as in
# ^(::Irrational{:e}, x::Number) = exp(x)
# .^(::Irrational{:e}, x) = exp(x)
# but need to loop over types to prevent ambiguity with generic rules for ^(::Number, x) etc.
for T in (Irrational, Rational, Integer, Number)
^(::Irrational{:e}, x::T) = exp(x)
end
for T in (Range, BitArray, SparseMatrixCSC, StridedArray, AbstractArray)
.^(::Irrational{:e}, x::T) = exp(x)
end
^(::Irrational{:e}, x::AbstractMatrix) = expm(x)
log(::Irrational{:e}) = 1 # use 1 to correctly promote expressions like log(x)/log(e)
log(::Irrational{:e}, x) = log(x)
# align along = for nice Array printing
function alignment(x::Irrational)
m = match(r"^(.*?)(=.*)$", sprint(showcompact_lim, x))
m == nothing ? (length(sprint(showcompact_lim, x)), 0) :
(length(m.captures[1]), length(m.captures[2]))
end