diff --git a/base/sparse/csparse.jl b/base/sparse/csparse.jl index a9b251eea5b5bf..cc3b324117d6e3 100644 --- a/base/sparse/csparse.jl +++ b/base/sparse/csparse.jl @@ -13,130 +13,6 @@ # Section 2.4: Triplet form # http://www.cise.ufl.edu/research/sparse/CSparse/ -""" - sparse(I,J,V,[m,n,combine]) - -Create a sparse matrix `S` of dimensions `m x n` such that `S[I[k], J[k]] = V[k]`. -The `combine` function is used to combine duplicates. If `m` and `n` are not -specified, they are set to `maximum(I)` and `maximum(J)` respectively. If the -`combine` function is not supplied, duplicates are added by default. All elements -of `I` must satisfy `1 <= I[k] <= m`, and all elements of `J` must satisfy `1 <= J[k] <= n`. -""" -function sparse{Tv,Ti<:Integer}(I::AbstractVector{Ti}, - J::AbstractVector{Ti}, - V::AbstractVector{Tv}, - nrow::Integer, ncol::Integer, - combine::Union{Function,Base.Func}) - - N = length(I) - if N != length(J) || N != length(V) - throw(ArgumentError("triplet I,J,V vectors must be the same length")) - end - if N == 0 - return spzeros(eltype(V), Ti, nrow, ncol) - end - - # Work array - Wj = Array(Ti, max(nrow,ncol)+1) - - # Allocate sparse matrix data structure - # Count entries in each row - Rnz = zeros(Ti, nrow+1) - Rnz[1] = 1 - nz = 0 - for k=1:N - iind = I[k] - iind > 0 || throw(ArgumentError("all I index values must be > 0")) - iind <= nrow || throw(ArgumentError("all I index values must be ≤ the number of rows")) - if V[k] != 0 - Rnz[iind+1] += 1 - nz += 1 - end - end - Rp = cumsum(Rnz) - Ri = Array(Ti, nz) - Rx = Array(Tv, nz) - - # Construct row form - # place triplet (i,j,x) in column i of R - # Use work array for temporary row pointers - @simd for i=1:nrow; @inbounds Wj[i] = Rp[i]; end - - @inbounds for k=1:N - iind = I[k] - jind = J[k] - jind > 0 || throw(ArgumentError("all J index values must be > 0")) - jind <= ncol || throw(ArgumentError("all J index values must be ≤ the number of columns")) - p = Wj[iind] - Vk = V[k] - if Vk != 0 - Wj[iind] += 1 - Rx[p] = Vk - Ri[p] = jind - end - end - - # Reset work array for use in counting duplicates - @simd for j=1:ncol; @inbounds Wj[j] = 0; end - - # Sum up duplicates and squeeze - anz = 0 - @inbounds for i=1:nrow - p1 = Rp[i] - p2 = Rp[i+1] - 1 - pdest = p1 - - for p = p1:p2 - j = Ri[p] - pj = Wj[j] - if pj >= p1 - Rx[pj] = combine(Rx[pj], Rx[p]) - else - Wj[j] = pdest - if pdest != p - Ri[pdest] = j - Rx[pdest] = Rx[p] - end - pdest += one(Ti) - end - end - - Rnz[i] = pdest - p1 - anz += (pdest - p1) - end - - # Transpose from row format to get the CSC format - RiT = Array(Ti, anz) - RxT = Array(Tv, anz) - - # Reset work array to build the final colptr - Wj[1] = 1 - @simd for i=2:(ncol+1); @inbounds Wj[i] = 0; end - @inbounds for j = 1:nrow - p1 = Rp[j] - p2 = p1 + Rnz[j] - 1 - for p = p1:p2 - Wj[Ri[p]+1] += 1 - end - end - RpT = cumsum(Wj[1:(ncol+1)]) - - # Transpose - @simd for i=1:length(RpT); @inbounds Wj[i] = RpT[i]; end - @inbounds for j = 1:nrow - p1 = Rp[j] - p2 = p1 + Rnz[j] - 1 - for p = p1:p2 - ind = Ri[p] - q = Wj[ind] - Wj[ind] += 1 - RiT[q] = j - RxT[q] = Rx[p] - end - end - - return SparseMatrixCSC(nrow, ncol, RpT, RiT, RxT) -end # Compute the elimination tree of A using triu(A) returning the parent vector. # A root node is indicated by 0. This tree may actually be a forest in that diff --git a/base/sparse/sparsematrix.jl b/base/sparse/sparsematrix.jl index b4b976d4b89b6a..71d74775588765 100644 --- a/base/sparse/sparsematrix.jl +++ b/base/sparse/sparsematrix.jl @@ -318,7 +318,221 @@ function sparse_IJ_sorted!{Ti<:Integer}(I::AbstractVector{Ti}, J::AbstractVector return SparseMatrixCSC(m, n, colptr, I, V) end -## sparse() can take its inputs in unsorted order (the parent method is now in csparse.jl) +""" + sparse(I, J, V, [m, n, combine]) + +Create a sparse matrix `S` of dimensions `m` x `n` such that `S[I[k], J[k]] = V[k]`. The +`combine` function is used to combine duplicates. If `m` and `n` are not specified, they +are set to `maximum(I)` and `maximum(J)` respectively. If the `combine` function is not +supplied, duplicates are added by default. All elements of `I` must satisfy +`1 <= I[k] <= m`, and all elements of `J` must satisfy `1 <= J[k] <= n`. + +For additional documentation and an expert driver, see `Base.SparseArrays.sparse!`. +""" +function sparse{Tv,Ti<:Integer}(I::AbstractVector{Ti}, J::AbstractVector{Ti}, V::AbstractVector{Tv}, m::Integer, n::Integer, combine) + coolen = length(I) + if length(J) != coolen || length(V) != coolen + throw(ArgumentError(string("the first three arguments' lengths must match, ", + "length(I) (=$(length(I))) == length(J) (= $(length(J))) == length(V) (= ", + "$(length(V)))"))) + end + + if m == 0 || n == 0 || coolen == 0 + if coolen != 0 + if n == 0 + throw(ArgumentError("column indices J[k] must satisfy 1 <= J[k] <= n")) + elseif m == 0 + throw(ArgumentError("row indices I[k] must satisfy 1 <= I[k] <= m")) + end + end + SparseMatrixCSC(m, n, ones(Ti, n+1), Vector{Ti}(), Vector{Tv}()) + else + # Allocate storage for CSR form + csrrowptr = Vector{Ti}(m+1) + csrcolval = Vector{Ti}(coolen) + csrnzval = Vector{Tv}(coolen) + + # Allocate storage for the CSC form's column pointers and a necessary workspace + csccolptr = Vector{Ti}(n+1) + klasttouch = Vector{Ti}(n) + + # Allocate empty arrays for the CSC form's row and nonzero value arrays + # The parent method called below automagically resizes these arrays + cscrowval = Vector{Ti}() + cscnzval = Vector{Tv}() + + sparse!(I, J, V, m, n, combine, klasttouch, + csrrowptr, csrcolval, csrnzval, + csccolptr, cscrowval, cscnzval ) + end +end + +""" + sparse!{Tv,Ti<:Integer}( + I::AbstractVector{Ti}, J::AbstractVector{Ti}, V::AbstractVector{Tv}, + m::Integer, n::Integer, combine, klasttouch::Vector{Ti}, + csrrowptr::Vector{Ti}, csrcolval::Vector{Ti}, csrnzval::Vector{Tv}, + [csccolptr::Vector{Ti}], [cscrowval::Vector{Ti}, cscnzval::Vector{Tv}] ) + +Parent of and expert driver for `sparse`; see `sparse` for basic usage. This method +allows the user to provide preallocated storage for `sparse`'s intermediate objects and +result as described below. This capability enables more efficient successive construction +of `SparseMatrixCSC`s from coordinate representations, and also enables extraction of an +unsorted-column representation of the result's transpose at no additional cost. + +This method consists of three major steps: (1) Counting-sort the provided coordinate +representation into an unsorted-row CSR form including repeated entries. (2) Sweep through +the CSR form, simultaneously calculating the desired CSC form's column-pointer array, +detecting repeated entries, and repacking the CSR form with repeated entries combined; +this stage yields an unsorted-row CSR form with no repeated entries. (3) Counting-sort the +preceding CSR form into a fully-sorted CSC form with no repeated entries. + +Input arrays `csrrowptr`, `csrcolval`, and `csrnzval` constitute storage for the +intermediate CSR forms and require `length(csrrowptr) >= m + 1`, +`length(csrcolval) >= length(I)`, and `length(csrnzval >= length(I))`. Input +array `klasttouch`, workspace for the second stage, requires `length(klasttouch) >= n`. +Optional input arrays `csccolptr`, `cscrowval`, and `cscnzval` constitute storage for the +returned CSC form `S`. `csccolptr` requires `length(csccolptr) >= n + 1`. If necessary, +`cscrowval` and `cscnzval` are automatically resized to satisfy +`length(cscrowval) >= nnz(S)` and `length(cscnzval) >= nnz(S)`; hence, if `nnz(S)` is +unknown at the outset, passing in empty vectors of the appropriate type (`Vector{Ti}()` +and `Vector{Tv}()` respectively) suffices, or calling the `sparse!` method +neglecting `cscrowval` and `cscnzval`. + +On return, `csrrowptr`, `csrcolval`, and `csrnzval` contain an unsorted-column +representation of the result's transpose. + +For the sake of efficiency, this method performs no argument checking beyond +`1 <= I[k] <= m` and `1 <= J[k] <= n`. Use with care. Testing with `--check-bounds=yes` +is wise. + +This method runs in `O(m, n, length(I))` time. The HALFPERM algorithm described in +F. Gustavson, "Two fast algorithms for sparse matrices: multiplication and permuted +transposition," ACM TOMS 4(3), 250-269 (1978) inspired this method's use of a pair of +counting sorts. + +Performance note: As of January 2016, `combine` should be a functor for this method to +perform well. This caveat may disappear when the work in `jb/functions` lands. +""" +function sparse!{Tv,Ti<:Integer}(I::AbstractVector{Ti}, J::AbstractVector{Ti}, + V::AbstractVector{Tv}, m::Integer, n::Integer, combine, klasttouch::Vector{Ti}, + csrrowptr::Vector{Ti}, csrcolval::Vector{Ti}, csrnzval::Vector{Tv}, + csccolptr::Vector{Ti}, cscrowval::Vector{Ti}, cscnzval::Vector{Tv} ) + + # Compute the CSR form's row counts and store them shifted forward by one in csrrowptr + fill!(csrrowptr, 0) + coolen = length(I) + @inbounds for k in 1:coolen + Ik = I[k] + if 1 > Ik || m < Ik + throw(ArgumentError("row indices I[k] must satisfy 1 <= I[k] <= m")) + end + csrrowptr[Ik+1] += 1 + end + + # Compute the CSR form's rowptrs and store them shifted forward by one in csrrowptr + countsum = 1 + csrrowptr[1] = 1 + @inbounds for i in 2:(m+1) + overwritten = csrrowptr[i] + csrrowptr[i] = countsum + countsum += overwritten + end + + # Counting-sort the column and nonzero values from J and V into csrcolval and csrnzval + # Tracking write positions in csrrowptr corrects the row pointers + @inbounds for k in 1:coolen + Ik, Jk = I[k], J[k] + if 1 > Jk || n < Jk + throw(ArgumentError("column indices J[k] must satisfy 1 <= J[k] <= n")) + end + csrk = csrrowptr[Ik+1] + csrrowptr[Ik+1] = csrk+1 + csrcolval[csrk] = Jk + csrnzval[csrk] = V[k] + end + # This completes the unsorted-row, has-repeats CSR form's construction + + # Sweep through the CSR form, simultaneously (1) caculating the CSC form's column + # counts and storing them shifted forward by one in csccolptr; (2) detecting repeated + # entries; and (3) repacking the CSR form with the repeated entries combined. + # + # Minimizing extraneous communication and nonlocality of reference, primarily by using + # only a single auxiliary array in this step, is the key to this method's performance. + fill!(csccolptr, 0) + fill!(klasttouch, 0) + writek = 1 + newcsrrowptri = 1 + origcsrrowptri = 1 + origcsrrowptrip1 = csrrowptr[2] + @inbounds for i in 1:m + for readk in origcsrrowptri:(origcsrrowptrip1-1) + j = csrcolval[readk] + if klasttouch[j] < newcsrrowptri + klasttouch[j] = writek + if writek != readk + csrcolval[writek] = j + csrnzval[writek] = csrnzval[readk] + end + writek += 1 + csccolptr[j+1] += 1 + else + klt = klasttouch[j] + csrnzval[klt] = combine(csrnzval[klt], csrnzval[readk]) + end + end + newcsrrowptri = writek + origcsrrowptri = origcsrrowptrip1 + origcsrrowptrip1 != writek && (csrrowptr[i+1] = writek) + i < m && (origcsrrowptrip1 = csrrowptr[i+2]) + end + + # Compute the CSC form's colptrs and store them shifted forward by one in csccolptr + countsum = 1 + csccolptr[1] = 1 + @inbounds for j in 2:(n+1) + overwritten = csccolptr[j] + csccolptr[j] = countsum + countsum += overwritten + end + + # Now knowing the CSC form's entry count, resize cscrowval and cscnzval if necessary + cscnnz = countsum - 1 + length(cscrowval) < cscnnz && resize!(cscrowval, cscnnz) + length(cscnzval) < cscnnz && resize!(cscnzval, cscnnz) + + # Finally counting-sort the row and nonzero values from the CSR form into cscrowval and + # cscnzval. Tracking write positions in csccolptr corrects the column pointers. + @inbounds for i in 1:m + for csrk in csrrowptr[i]:(csrrowptr[i+1]-1) + j = csrcolval[csrk] + x = csrnzval[csrk] + csck = csccolptr[j+1] + csccolptr[j+1] = csck+1 + cscrowval[csck] = i + cscnzval[csck] = x + end + end + + SparseMatrixCSC(m, n, csccolptr, cscrowval, cscnzval) +end +function sparse!{Tv,Ti<:Integer}( + I::AbstractVector{Ti}, J::AbstractVector{Ti}, V::AbstractVector{Tv}, + m::Integer, n::Integer, combine, klasttouch::Vector{Ti}, + csrrowptr::Vector{Ti}, csrcolval::Vector{Ti}, csrnzval::Vector{Tv}, + csccolptr::Vector{Ti} ) + sparse!(I, J, V, m, n, combine, klasttouch, + csrrowptr, csrcolval, csrnzval, + csccolptr, Vector{Ti}(), Vector{Tv}() ) +end +function sparse!{Tv,Ti<:Integer}( + I::AbstractVector{Ti}, J::AbstractVector{Ti}, V::AbstractVector{Tv}, + m::Integer, n::Integer, combine, klasttouch::Vector{Ti}, + csrrowptr::Vector{Ti}, csrcolval::Vector{Ti}, csrnzval::Vector{Tv} ) + sparse!(I, J, V, m, n, combine, klasttouch, + csrrowptr, csrcolval, csrnzval, + Vector{Ti}(n+1), Vector{Ti}(), Vector{Tv}() ) +end dimlub(I) = isempty(I) ? 0 : Int(maximum(I)) #least upper bound on required sparse matrix dimension diff --git a/test/sparsedir/sparse.jl b/test/sparsedir/sparse.jl index 4b92a06cf9247b..014e96607c5c35 100644 --- a/test/sparsedir/sparse.jl +++ b/test/sparsedir/sparse.jl @@ -8,6 +8,13 @@ using Base.Test # check sparse matrix construction @test isequal(full(sparse(complex(ones(5,5),ones(5,5)))), complex(ones(5,5),ones(5,5))) +@test_throws ArgumentError sparse([1,2,3], [1,2], [1,2,3], 3, 3) +@test_throws ArgumentError sparse([1,2,3], [1,2,3], [1,2], 3, 3) +@test_throws ArgumentError sparse([1,2,3], [1,2,3], [1,2,3], 0, 1) +@test_throws ArgumentError sparse([1,2,3], [1,2,3], [1,2,3], 1, 0) +@test_throws ArgumentError sparse([1,2,4], [1,2,3], [1,2,3], 3, 3) +@test_throws ArgumentError sparse([1,2,3], [1,2,4], [1,2,3], 3, 3) +@test isequal(sparse(Int[], Int[], Int[], 0, 0), SparseMatrixCSC(0, 0, Int[1], Int[], Int[])) # check matrix operations se33 = speye(3) @@ -303,7 +310,8 @@ mfe22 = eye(Float64, 2) @test_throws ArgumentError sparsevec([3,5,7],[0.1,0.0,3.2],4) # issue #5169 -@test nnz(sparse([1,1],[1,2],[0.0,-0.0])) == 0 +# @test nnz(sparse([1,1],[1,2],[0.0,-0.0])) == 0 +# commented following change to sparse() in #14798, also see #12605, #9928, #9906, #6769 # issue #5386 K,J,V = findnz(SparseMatrixCSC(2,1,[1,3],[1,2],[1.0,0.0])) @@ -314,7 +322,8 @@ A = speye(Bool, 5) @test find(A) == find(x -> x == true, A) == find(full(A)) # issue #5437 -@test nnz(sparse([1,2,3],[1,2,3],[0.0,1.0,2.0])) == 2 +# @test nnz(sparse([1,2,3],[1,2,3],[0.0,1.0,2.0])) == 2 +# commented following change to sparse() in #14798, also see #12605, #9928, #9906, #6769 # issue #5824 @test sprand(4,5,0.5).^0 == sparse(ones(4,5))