diff --git a/NEWS.md b/NEWS.md index 661366014f116..03eb323389e7f 100644 --- a/NEWS.md +++ b/NEWS.md @@ -306,6 +306,8 @@ Library improvements * New functions `randsubseq` and `randsubseq!` to create a random subsequence of an array ([#6726]) + * New macro `@evalpoly` for efficient inline evaluation of polynomials ([#7146]). + Build improvements ------------------ diff --git a/base/exports.jl b/base/exports.jl index 7f16e442d7059..ab762defb5d74 100644 --- a/base/exports.jl +++ b/base/exports.jl @@ -268,6 +268,7 @@ export At_rdiv_Bt, # scalar math + @evalpoly, abs, abs2, acos, diff --git a/base/math.jl b/base/math.jl index 61aa80f7000fd..e347a28f6abb6 100644 --- a/base/math.jl +++ b/base/math.jl @@ -43,16 +43,16 @@ clamp{T}(x::AbstractArray{T}, lo, hi) = macro horner(x, p...) ex = esc(p[end]) for i = length(p)-1:-1:1 - ex = :($(esc(p[i])) + $(esc(x)) * $ex) + ex = :($(esc(p[i])) + t * $ex) end - ex + Expr(:block, :(t = $(esc(x))), ex) end -# Evaluate p[1] + z*p[2] + z^2*p[3] + ... + z^(n-1)*p[n], assuming -# the p[k] are *real* coefficients. This uses Horner's method if z -# is real, but for complex z it uses a more efficient algorithm described -# in Knuth, TAOCP vol. 2, section 4.6.4, equation (3). -macro chorner(z, p...) +# Evaluate p[1] + z*p[2] + z^2*p[3] + ... + z^(n-1)*p[n]. This uses +# Horner's method if z is real, but for complex z it uses a more +# efficient algorithm described in Knuth, TAOCP vol. 2, section 4.6.4, +# equation (3). +macro evalpoly(z, p...) a = :($(esc(p[end]))) b = :($(esc(p[end-1]))) as = {} @@ -65,14 +65,15 @@ macro chorner(z, p...) ai = :a0 push!(as, :($ai = $a)) C = Expr(:block, - :(x = real($(esc(z)))), - :(y = imag($(esc(z)))), + :(t = $(esc(z))), + :(x = real(t)), + :(y = imag(t)), :(r = x + x), :(s = x*x + y*y), as..., - :($ai * $(esc(z)) + $b)) + :($ai * t + $b)) R = Expr(:macrocall, symbol("@horner"), esc(z), p...) - :(isa($(esc(z)), Real) ? $R : $C) + :(isa($(esc(z)), Complex) ? $C : $R) end rad2deg(z::Real) = oftype(z, 57.29577951308232*z) diff --git a/base/special/gamma.jl b/base/special/gamma.jl index 08770004039f5..3c24b4b05b962 100644 --- a/base/special/gamma.jl +++ b/base/special/gamma.jl @@ -91,7 +91,7 @@ function digamma(z::Union(Float64,Complex{Float64})) ψ += log(z) - 0.5*t t *= t # 1/z^2 # the coefficients here are float64(bernoulli[2:9] .// (2*(1:8))) - ψ -= t * @chorner(t,0.08333333333333333,-0.008333333333333333,0.003968253968253968,-0.004166666666666667,0.007575757575757576,-0.021092796092796094,0.08333333333333333,-0.4432598039215686) + ψ -= t * @evalpoly(t,0.08333333333333333,-0.008333333333333333,0.003968253968253968,-0.004166666666666667,0.007575757575757576,-0.021092796092796094,0.08333333333333333,-0.4432598039215686) end function trigamma(z::Union(Float64,Complex{Float64})) @@ -114,7 +114,7 @@ function trigamma(z::Union(Float64,Complex{Float64})) w = t * t # 1/z^2 ψ += t + 0.5*w # the coefficients here are float64(bernoulli[2:9]) - ψ += t*w * @chorner(w,0.16666666666666666,-0.03333333333333333,0.023809523809523808,-0.03333333333333333,0.07575757575757576,-0.2531135531135531,1.1666666666666667,-7.092156862745098) + ψ += t*w * @evalpoly(w,0.16666666666666666,-0.03333333333333333,0.023809523809523808,-0.03333333333333333,0.07575757575757576,-0.2531135531135531,1.1666666666666667,-7.092156862745098) end signflip(m::Number, z) = (-1+0im)^m * z diff --git a/doc/stdlib/base.rst b/doc/stdlib/base.rst index a388ce71a6845..7cf50a0a6f7e5 100644 --- a/doc/stdlib/base.rst +++ b/doc/stdlib/base.rst @@ -3221,6 +3221,14 @@ Mathematical Functions Multiply ``x`` and ``y``, giving the result as a larger type. +.. function:: @evalpoly(z, c...) + + Evaluate the polynomial :math:`\sum_k c[k] z^{k-1}` for the + coefficients ``c[1]``, ``c[2]``, ...; that is, the coefficients are + given in ascending order by power of ``z``. This macro expands to + efficient inline code that uses either Horner's method or, for + complex ``z``, a more efficient Goertzel-like algorithm. + Data Formats ------------