From ddfdeb7648dd4887f192fe6a262fdeddd3e3f745 Mon Sep 17 00:00:00 2001 From: schillic Date: Sun, 25 Feb 2024 13:24:06 +0100 Subject: [PATCH] replace $ with double backticks --- docs/src/man/systems.md | 80 ++++++++++++++++++++--------------------- 1 file changed, 40 insertions(+), 40 deletions(-) diff --git a/docs/src/man/systems.md b/docs/src/man/systems.md index b7475263..9519dcbf 100644 --- a/docs/src/man/systems.md +++ b/docs/src/man/systems.md @@ -3,8 +3,8 @@ ## Using the `@system` Macro A convenient way to create a new system is with the `@system` macro. For example, -the ODE $x'(t) = -2x(t)$ is simply `x' = -2x`, where $x'(t) := dx/dt$ is the derivative -of state $x(t)$ with respect to "time": +the ODE ``x'(t) = -2x(t)`` is simply `x' = -2x`, where ``x'(t) := dx/dt`` is the derivative +of state ``x(t)`` with respect to "time": ```@example system_examples using MathematicalSystems @@ -12,7 +12,7 @@ using MathematicalSystems @system(x' = -2x) ``` -We can also add state constraints, say $x(t) ≥ 0.5$, +We can also add state constraints, say ``x(t) ≥ 0.5``, ```@example system_examples using LazySets @@ -29,11 +29,11 @@ B = Ball2(zeros(2), 1.0) c = [0.0, 5.0] @system(z' = A*z + c, z ∈ B) ``` -which defines the two-dimensional system $x' = y$, $y' = -x - 2y + 3$, with state -constraints $z ∈ B = \{ \sqrt{x^2 + y^2} \leq 5\}$. +which defines the two-dimensional system ``x' = y``, ``y' = -x - 2y + 3``, with state +constraints ``z ∈ B = \{ \sqrt{x^2 + y^2} \leq 5\}``. Initial-value problems can be specified with the `@ivp` macro. -For instance, we can attach an initial condition $z(0) = (0.2, 0.2])$ to +For instance, we can attach an initial condition ``z(0) = (0.2, 0.2])`` to the previous example: ```@example system_examples @@ -51,9 +51,9 @@ systems such as descriptor, polynomial or general nonlinear systems given by a s Julia function are available as well (see the tables below). Some applications require distinguishing between *controlled* inputs and *uncontrolled* or -noise inputs. In this library we make such distinction by noting field names with $u$ and $w$ +noise inputs. In this library we make such distinction by noting field names with ``u`` and ``w`` for (controlled) inputs and noise respectively. Please note that some systems are structurally -equivalent, for example `CLCCS` and `NCLCS` being $x' = Ax + Bu$ and $x' = Ax + Dw$ respectively; +equivalent, for example `CLCCS` and `NCLCS` being ``x' = Ax + Bu`` and ``x' = Ax + Dw`` respectively; the difference lies in the resulting value of getter functions such as `inputset` and `noiseset`. ## Summary Tables @@ -105,35 +105,35 @@ The following table summarizes the equation represented by each system type |Equation | State constraints | Input constraints|System type (abbr.)| |:-------|-------------|-----------|-----| -|$x' = 0$|no |no| CIS| -|$x' = 0, x ∈ X$|yes|no|CCIS| -|$x' = Ax$| no|no|LCS| -|$x' = Ax + c$|no|no |ACS| -|$x' = Ax + Bu$|no | no|LCCS| -|$x' = Ax + Bu + c$|no|no|ACCS| -|$x' = Ax, x ∈ X$|yes|no|CLCS|| -|$x' = Ax + c, x ∈ X$|yes|no|CACS| -|$x' = Ax + Bu + c, x ∈ X, u ∈ U$|yes|yes|CACCS| -|$x' = Ax + Bu, x ∈ X, u ∈ U$|yes|yes|CLCCS| -|$Ex' = Ax$|no|no|LACS| -|$Ex' = Ax, x ∈ X$|yes|no|CLACS| -|$x' = p(x)$|no|no|PCS| -|$x' = p(x), x ∈ X$|yes|no|CPCS| -|$x' = f(x)$|no|no|BBCS| -|$x' = f(x), x ∈ X$|yes|no|CBBCS| -|$x' = f(x, u)$|no|no|BBCCS| -|$x' = f(x, u), x ∈ X, u ∈ U$|yes|yes|CBBCCS| -|$x' = Ax + Dw$|no|no|NLCS| -|$x' = Ax + Dw, x ∈ X, w ∈ W$|yes|yes|NCLCS | -|$x' = Ax + Bu + Dw$|no|no|NLCCS| -|$x' = Ax + Bu + Dw, x ∈ X, u ∈ U, w ∈ W$|yes|yes|NCLCCS | -|$x' = Ax + Bu + c + Dw$|no|no|NACCS| -|$x' = Ax + Bu + c + Dw, x ∈ X, u ∈ U, w ∈ W$|yes|yes|NCALCCS | -|$x' = f(x, u, w)$|no|no|NBBCCS| -|$x' = f(x, u, w), x ∈ X, u ∈ U, w ∈ W$|yes|yes|NCBBCCS| -|$Mx'' + Cx' + Kx = 0$|no|no|SOLCS| -|$Mx'' + Cx' + Kx = b$|no|no|SOACS| -|$Mx'' + Cx' + Kx = Bu + d, x ∈ X, u ∈ U$|yes|yes|SOCACCS| -|$Mx'' + Cx' + Kx = Bu, x ∈ X, u ∈ U$|yes|yes|SOCLCCS| -|$Mx'' + Cx' + f_i(x) = f_e$|no|no|SOCS| -|$Mx'' + Cx' + f_i(x) = f_e$, x ∈ X, u ∈ U$|yes|yes|SOCCS| +|``x' = 0``|no |no| CIS| +|``x' = 0, x ∈ X``|yes|no|CCIS| +|``x' = Ax``| no|no|LCS| +|``x' = Ax + c``|no|no |ACS| +|``x' = Ax + Bu``|no | no|LCCS| +|``x' = Ax + Bu + c``|no|no|ACCS| +|``x' = Ax, x ∈ X``|yes|no|CLCS|| +|``x' = Ax + c, x ∈ X``|yes|no|CACS| +|``x' = Ax + Bu + c, x ∈ X, u ∈ U``|yes|yes|CACCS| +|``x' = Ax + Bu, x ∈ X, u ∈ U``|yes|yes|CLCCS| +|``Ex' = Ax``|no|no|LACS| +|``Ex' = Ax, x ∈ X``|yes|no|CLACS| +|``x' = p(x)``|no|no|PCS| +|``x' = p(x), x ∈ X``|yes|no|CPCS| +|``x' = f(x)``|no|no|BBCS| +|``x' = f(x), x ∈ X``|yes|no|CBBCS| +|``x' = f(x, u)``|no|no|BBCCS| +|``x' = f(x, u), x ∈ X, u ∈ U``|yes|yes|CBBCCS| +|``x' = Ax + Dw``|no|no|NLCS| +|``x' = Ax + Dw, x ∈ X, w ∈ W``|yes|yes|NCLCS | +|``x' = Ax + Bu + Dw``|no|no|NLCCS| +|``x' = Ax + Bu + Dw, x ∈ X, u ∈ U, w ∈ W``|yes|yes|NCLCCS | +|``x' = Ax + Bu + c + Dw``|no|no|NACCS| +|``x' = Ax + Bu + c + Dw, x ∈ X, u ∈ U, w ∈ W``|yes|yes|NCALCCS | +|``x' = f(x, u, w)``|no|no|NBBCCS| +|``x' = f(x, u, w), x ∈ X, u ∈ U, w ∈ W``|yes|yes|NCBBCCS| +|``Mx'' + Cx' + Kx = 0``|no|no|SOLCS| +|``Mx'' + Cx' + Kx = b``|no|no|SOACS| +|``Mx'' + Cx' + Kx = Bu + d, x ∈ X, u ∈ U``|yes|yes|SOCACCS| +|``Mx'' + Cx' + Kx = Bu, x ∈ X, u ∈ U``|yes|yes|SOCLCCS| +|``Mx'' + Cx' + f_i(x) = f_e``|no|no|SOCS| +|``Mx'' + Cx' + f_i(x) = f_e``, x ∈ X, u ∈ U``|yes|yes|SOCCS|