-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathtest.jl
57 lines (48 loc) · 1.79 KB
/
test.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
using Test, Libdl, Random
const libRmath = "src/libRmath-julia.$(Libdl.dlext)"
unsafe_store!(cglobal((:unif_rand_ptr, libRmath), Ptr{Cvoid}),
@cfunction(rand, Float64, ()))
unsafe_store!(cglobal((:norm_rand_ptr, libRmath), Ptr{Cvoid}),
@cfunction(randn, Float64, ()))
unsafe_store!(cglobal((:exp_rand_ptr, libRmath), Ptr{Cvoid}),
@cfunction(randexp, Float64, ()))
@testset "ccall" begin
@test ccall((:dbeta, libRmath), Float64, (Float64, Float64, Float64, Int32), 0.5, 0.1, 5.0, 0) ≈ 0.014267678091051986
@test 0 <= ccall((:rbeta, libRmath), Float64, (Float64, Float64), 0.1, 5.0) <= 1.0
end
@testset "rhyper" begin
# double rhyper(double nn1in, double nn2in, double kkin)
Nred = 30.0
Nblue = 40.0
Npulled = 5.0
hyper_samples = [
ccall((:rhyper, libRmath), Float64, (Float64, Float64, Float64), Nred, Nblue, Npulled)
for _ in 1:1_000_000
]
expected_mean = Npulled * Nred / (Nred + Nblue)
sample_mean = sum(hyper_samples) / length(hyper_samples)
@test sample_mean ≈ expected_mean rtol = 0.01
N = (Nred + Nblue)
expected_variance = Npulled * Nred * (N - Nred) * (N - Npulled) / (N * N * (N - 1))
sample_variance = 1 / (length(hyper_samples)) * sum((hyper_samples .- sample_mean) .^ 2)
@test sample_variance ≈ expected_variance rtol = 0.01
end
function sample_KkC(n; N, Q)
K = rand([1,2,3,4,5])
k = ccall(
(:rhyper, libRmath), Float64, (Float64, Float64, Float64),
K, N-K, n
)
return k
end
@testset "fulll" begin
function f(Q)
objective(n) = [sample_KkC(n; N = 819_200, Q) for _ = 1:100]
vals = [10, 100]
objective.(vals)
end
Qs = [0.05, 0.055, 0.1, 0.2, 0.3]
Threads.@threads for i in eachindex(Qs)
f(Qs[i])
end
end