-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathsentiment_cloud.r
138 lines (92 loc) · 3.14 KB
/
sentiment_cloud.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
library(twitteR)
library(RCurl)
library(RJSONIO)
library(stringr)
library(tm)
library(wordcloud)
####################################################################
getSentiment <- function (text, key){
text <- URLencode(text);
#save all the spaces, then get rid of the weird characters that break the API, then convert back the URL-encoded spaces.
text <- str_replace_all(text, "%20", " ");
text <- str_replace_all(text, "%\\d\\d", "");
text <- str_replace_all(text, " ", "%20");
if (str_length(text) > 360){
text <- substr(text, 0, 359);
}
##########################################
data <- getURL(paste("http://api.datumbox.com/1.0/TwitterSentimentAnalysis.json?api_key=", key, "&text=",text, sep=""))
js <- fromJSON(data, asText=TRUE);
# get mood probability
sentiment = js$output$result
###################################
return(list(sentiment=sentiment))
}
clean.text <- function(some_txt)
{
some_txt = gsub("(RT|via)((?:\\b\\W*@\\w+)+)", "", some_txt)
some_txt = gsub("@\\w+", "", some_txt)
some_txt = gsub("[[:punct:]]", "", some_txt)
some_txt = gsub("[[:digit:]]", "", some_txt)
some_txt = gsub("http\\w+", "", some_txt)
some_txt = gsub("[ \t]{2,}", "", some_txt)
some_txt = gsub("^\\s+|\\s+$", "", some_txt)
some_txt = gsub("amp", "", some_txt)
# define "tolower error handling" function
try.tolower = function(x)
{
y = NA
try_error = tryCatch(tolower(x), error=function(e) e)
if (!inherits(try_error, "error"))
y = tolower(x)
return(y)
}
some_txt = sapply(some_txt, try.tolower)
some_txt = some_txt[some_txt != ""]
names(some_txt) = NULL
return(some_txt)
}
###########################################################
print("Getting tweets...")
# get some tweets
tweets = searchTwitter(keyword, n, lang="en")
# get text
tweet_txt = sapply(tweets, function(x) x$getText())
# clean text
tweet_clean = clean.text(tweet_txt)
tweet_num = length(tweet_clean)
# data frame (text, sentiment)
tweet_df = data.frame(text=tweet_clean, sentiment=rep("", tweet_num),stringsAsFactors=FALSE)
print("Getting sentiments...")
# apply function getSentiment
sentiment = rep(0, tweet_num)
for (i in 1:tweet_num)
{
tmp = getSentiment(tweet_clean[i], db_key)
tweet_df$sentiment[i] = tmp$sentiment
print(paste(i," of ", tweet_num))
}
# delete rows with no sentiment
tweet_df <- tweet_df[tweet_df$sentiment!="",]
#separate text by sentiment
sents = levels(factor(tweet_df$sentiment))
#emos_label <- emos
# get the labels and percents
labels <- lapply(sents, function(x) paste(x,format(round((length((tweet_df[tweet_df$sentiment ==x,])$text)/length(tweet_df$sentiment)*100),2),nsmall=2),"%"))
nemo = length(sents)
emo.docs = rep("", nemo)
for (i in 1:nemo)
{
tmp = tweet_df[tweet_df$sentiment == sents[i],]$text
emo.docs[i] = paste(tmp,collapse=" ")
}
# remove stopwords
emo.docs = removeWords(emo.docs, stopwords("german"))
emo.docs = removeWords(emo.docs, stopwords("english"))
corpus = Corpus(VectorSource(emo.docs))
tdm = TermDocumentMatrix(corpus)
tdm = as.matrix(tdm)
colnames(tdm) = labels
# comparison word cloud
comparison.cloud(tdm, colors = brewer.pal(nemo, "Dark2"),
scale = c(3,.5), random.order = FALSE, title.size = 1.5)