-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert.py
80 lines (70 loc) · 2.57 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
import argparse
huggingface_to_paddle = {
".attn.": ".",
"intermediate.dense": "ffn",
"output.dense": "ffn_output",
".output.LayerNorm.": ".layer_norm.",
".LayerNorm.": ".layer_norm.",
"lm_head.decoder.bias": "lm_head.decoder_bias",
}
skip_weights = ["lm_head.decoder.weight", "lm_head.bias"]
dont_transpose = [
"_embeddings.weight",
".LayerNorm.weight",
".layer_norm.weight",
"relative_attention_bias.weight",
]
def convert_pytorch_checkpoint_to_paddle(pytorch_checkpoint_path, paddle_dump_path):
import torch
import paddle
pytorch_state_dict = torch.load(pytorch_checkpoint_path, map_location="cpu")
paddle_state_dict = OrderedDict()
for k, v in pytorch_state_dict.items():
transpose = False
if k in skip_weights:
continue
if k[-7:] == ".weight":
if not any([w in k for w in dont_transpose]):
if v.ndim == 2:
v = v.transpose(0, 1)
transpose = True
oldk = k
for huggingface_name, paddle_name in huggingface_to_paddle.items():
k = k.replace(huggingface_name, paddle_name)
print(f"Converting: {oldk} => {k} | is_transpose {transpose}")
paddle_state_dict[k] = v.data.numpy()
paddle.save(paddle_state_dict, paddle_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--pytorch_checkpoint_path",
default="weights/hg/mpnet-base/pytorch_model.bin",
type=str,
required=False,
help="Path to the Pytorch checkpoint path.",
)
parser.add_argument(
"--paddle_dump_path",
default="weights/pd/mpnet-base/model_state.pdparams",
type=str,
required=False,
help="Path to the output Paddle model.",
)
args = parser.parse_args()
convert_pytorch_checkpoint_to_paddle(
args.pytorch_checkpoint_path, args.paddle_dump_path
)