-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathpreprocess.py
338 lines (275 loc) · 10.7 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# coding=utf-8
# author: Junwei Liang [email protected]
# preprocess all usefull information into 3 set
d = "giving the original memoryqa dataset, will generate a *_data.p, *_shared.p for each split. tokenized question, answer, pointer to album will be in data, wordcounter, album will be in shared"
import os,sys,json,re
import argparse,nltk
import numpy as np
from collections import Counter
import cPickle as pickle
def get_args():
parser = argparse.ArgumentParser(description=d)
#parser.add_argument("datapath",action="store",type=str,help="/path/to/dataset(qa.json,album_info.json,bad_id,test.id)")
parser.add_argument("datajson",type=str,help="path to the qas.json")
parser.add_argument("albumjson",type=str,help="path to album_info.json")
parser.add_argument("testids",type=str,help="path to test id list")
parser.add_argument("--valids",type=str,default=None,help="path to validation id list, if not set will be random 20%% of the training set")
parser.add_argument("imgfeat",action="store",type=str,help="/path/to img feat npz file")
parser.add_argument("glove",action="store",type=str,help="/path/to glove vector file")
parser.add_argument("outpath",type=str,help="output path")
return parser.parse_args()
def mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
# ------------------------------------------------ for lbum descript html tag
from HTMLParser import HTMLParser
class MLStripper(HTMLParser):
def __init__(self):
self.reset()
self.fed = []
def handle_data(self, d):
self.fed.append(d)
def get_data(self):
return ''.join(self.fed)
def strip_tags(html):
s = MLStripper()
s.feed(html)
return s.get_data()
# ------------------------------------------------------------
# for each token with "-" or others, remove it and split the token
def process_tokens(tokens):
newtokens = []
l = ("-","/", "~", '"', "'", ":","\)","\(","\[","\]","\{","\}")
for token in tokens:
# split then add multiple to new tokens
newtokens.extend([one for one in re.split("[%s]"%("").join(l),token) if one != ""])
return newtokens
def l2norm(feat):
l2norm = np.linalg.norm(feat,2)
return feat/l2norm
# word_counter words are lowered already
def get_word2vec(args,word_counter):
word2vec_dict = {}
import io
with io.open(args.glove, 'r', encoding='utf-8') as fh:
for line in fh:
array = line.lstrip().rstrip().split(" ")
word = array[0]
vector = list(map(float, array[1:]))
if word in word_counter:
word2vec_dict[word] = vector
#elif word.capitalize() in word_counter:
# word2vec_dict[word.capitalize()] = vector
elif word.lower() in word_counter:
word2vec_dict[word.lower()] = vector
#elif word.upper() in word_counter:
# word2vec_dict[word.upper()] = vector
#print "{}/{} of word vocab have corresponding vectors ".format(len(word2vec_dict), len(word_counter))
return word2vec_dict
from tqdm import tqdm
def prepro_each(args,data_type,question_ids,start_ratio=0.0,end_ratio=1.0):
debug = False
sent_tokenize = nltk.sent_tokenize
sent_tokenize = lambda para:[para] # right now we don't do sentence tokenization # just for album_description
def word_tokenize(tokens):
# nltk.word_tokenize will split ()
# "a" -> '``' + a + "''"
# lizzy's -> lizzy + 's
# they're -> they + 're
# then we remove and split "-"
return process_tokens([token.replace("''", '"').replace("``", '"') for token in nltk.word_tokenize(tokens)])
qas = {str(qa['question_id']):qa for qa in args.qas}
global_aids = {} # all the album Id the question used, also how many question used that album
q,cq,y,cy,aid,qid,cs,ccs,idxs,yidx = [],[],[],[],[],[],[],[],[],[] # choices, char choices
word_counter,char_counter = Counter(),Counter() # lower word counter
start_idx = int(round(len(question_ids) * start_ratio))
end_idx = int(round(len(question_ids) * end_ratio))
# go through all question first, then albums
for idx,question_id in enumerate(tqdm(question_ids[start_idx:end_idx])):
assert isinstance(question_id,str)
qa = qas[question_id]
# question
qi = word_tokenize(qa['question']) # no lower here
cqi = [list(qij) for qij in qi]
for qij in qi:
word_counter[qij.lower()] += 1
for qijk in qij:
char_counter[qijk] += 1
# album ids
for albumId in qa['album_ids']:
albumId = str(albumId)
if(not global_aids.has_key(albumId)):
global_aids[albumId] = 0
global_aids[albumId]+=1 # remember how many times this album is used
# answer, choices
yi = word_tokenize(qa['answer'])
cyi = [list(yij) for yij in yi]
for yij in yi:
word_counter[yij.lower()] += 1
for yijk in yij:
char_counter[yijk] +=1
ci = qa['multiple_choices_4'][:] # copy it
# remove the answer in choices
yidxi = ci.index(qa['answer']) # this is for during testing, we need to reconstruct the answer in the original order
ci.remove(qa['answer']) # will error if answer not in choice
assert len(ci) == 3
cci = [] # char for choices
for i,c in enumerate(ci):
ci[i] = word_tokenize(c)
cci.append([list(ciij) for ciij in ci[i]])
for ciij in ci[i]:
word_counter[ciij.lower()]+=1
for ciijk in ciij:
char_counter[ciijk]+=1
# for debug
if(debug):
print "questiion:%s"%qa['question']
print qi
print cqi
print "answer:%s"%(qa['answer'])
print yi
print cyi
print "choices:%s"%("/".join(qa['multiple_choices_4']))
print ci
print cci
break
q.append(qi)
cq.append(cqi)
y.append(yi)
cy.append(cyi)
yidx.append(yidxi)
cs.append(ci)
ccs.append(cci)
aid.append([str(one) for one in qa['album_ids']])
qid.append(question_id)
idxs.append(idx) # increament index for each qa
# get the shared now
albums = {str(album['album_id']):album for album in args.albums}
album_info = {}
pid2feat = {}
for albumId in tqdm(global_aids):
album = albums[albumId]
used = global_aids[albumId]
temp = {'aid':album['album_id']}
# album info
temp['title'] = word_tokenize(album['album_title'])
temp['title_c'] = [list(tok) for tok in temp['title']]
#temp['description'] = list(map(word_tokenize, sent_tokenize(strip_tags(album['album_description']))))
# treat description as one sentence
temp['description'] = word_tokenize(strip_tags(album['album_description']))
temp['description_c'] = [list(tok) for tok in temp['description']]
# use _ to connect?
if album['album_where'] is None:
temp['where'] = []
temp['where_c'] = []
else:
temp['where'] = word_tokenize(album['album_where'])
temp['where_c'] = [list(tok) for tok in temp['where']]
temp['when'] = word_tokenize(album['album_when'])
temp['when_c'] = [list(tok) for tok in temp['when']]
# photo info
temp['photo_titles'] = [word_tokenize(title) for title in album['photo_titles']]
temp['photo_titles_c'] = [[list(tok) for tok in title] for title in temp['photo_titles']]
# no feat for each album, we keep the photoId here
# another dict for pid2feat
#temp['photo_feats'] = [l2norm(args.images[str(pid)]) for pid in album['photo_ids']]
temp['photo_ids'] = [str(pid) for pid in album['photo_ids']]
assert len(temp['photo_ids']) == len(temp['photo_titles'])
for pid in temp['photo_ids']:
assert isinstance(pid, str)
if(not pid2feat.has_key(pid)):
#if(args.imageispca): # pca feature needs not l2norm
# pid2feat[pid] = args.images[pid]
#else:
# pid2feat[pid] = l2norm(args.images[pid])
# feature itself should be l2normed first
pid2feat[pid] = args.images[pid]
#assert len(temp['photo_feats']) == len(temp['photo_titles'])
if(debug):
print "album title:%s"%album['album_title']
print temp['title']
print temp['title_c']
print "album description:%s"%album['album_description']
print temp['description']
print temp['description_c']
print "album when:%s,where:%s"%(album['album_when'],album['album_where'])
print temp['when'],temp['where']
print temp['when_c'],temp['where_c']
print "album photo tile 1:%s"%album['photo_titles'][0]
print temp['photo_titles'][0]
print temp['photo_titles_c'][0]
sys.exit()
#print [tok for title in temp['photo_titles'] for tok in title ]
for t in temp['title'] + temp['description'] + temp['where'] + temp['when'] + [tok for title in temp['photo_titles'] for tok in title ]:
#print t
word_counter[t.lower()] += used
for c in t:
char_counter[c] += used
album_info[albumId] = temp
word2vec_dict = get_word2vec(args,word_counter)
#q,cq,y,cy,aid,qid,cs,ccs,idxs
data = {
'q':q,
'cq':cq,
'y':y,
'cy':cy,
'yidx': yidx,# the original answer idx in the choices list # this means the correct index
'aid':aid, # each is a list of aids
'qid':qid,
'idxs':idxs,
'cs':cs, # each is a list of wrong choices
'ccs':ccs,
}
shared = {
"albums" :album_info, # albumId -> photo_ids/title/when/where ...
"pid2feat":pid2feat, # pid -> image feature
"wordCounter":word_counter,
"charCounter":char_counter,
"word2vec":word2vec_dict
}
print "data:%s, char entry:%s, word entry:%s, word2vec entry:%s,album: %s/%s, image_feat:%s"%(data_type,len(char_counter),len(word_counter),len(word2vec_dict),len(album_info),len(albums),len(pid2feat))
pickle.dump(data,open(os.path.join(args.outpath,"%s_data.p"%data_type),"wb"))
pickle.dump(shared,open(os.path.join(args.outpath,"%s_shared.p"%data_type),"wb"))
def getTrainValIds(qas,validlist,testidlist):
testIds = [one.strip() for one in open(testidlist,"r").readlines()]
valIds = []
if validlist is not None:
valIds = [one.strip() for one in open(validlist,"r").readlines()]
trainIds = []
for one in qas:
qid = str(one['question_id'])
if((qid not in testIds) and (qid not in valIds)):
trainIds.append(qid)
# if validation id not provided, get from trainIds
if validlist is None:
valcount = int(len(trainIds)*0.2)
random.seed(1)
random.shuffle(trainIds)
random.shuffle(trainIds)
valIds = trainIds[:valcount]
trainIds = trainIds[valcount:]
print "total trainId:%s,valId:%s,testId:%s, total qa:%s"%(len(trainIds),len(valIds),len(testIds),len(qas))
return trainIds,valIds,testIds
import random
import cPickle as pickle
if __name__ == "__main__":
args = get_args()
mkdir(args.outpath)
# get the qids for training
args.qas = json.load(open(args.datajson,"r"))
args.albums = json.load(open(args.albumjson,"r"))
# if the image is a .p file, then we will read it differently
if(args.imgfeat.endswith(".p")):
print "read pickle image feat."
imagedata = pickle.load(open(args.imgfeat,"r"))
args.images = {}
assert len(imagedata[0]) == len(imagedata[1])
for i,pid in enumerate(imagedata[0]):
args.images[pid] = imagedata[1][i]
else:
print "read npz image feat."
args.images = np.load(args.imgfeat)
trainIds,valIds,testIds = getTrainValIds(args.qas,args.valids,args.testids)
prepro_each(args,"train",trainIds,0.0,1.0)
prepro_each(args,"val",valIds,0.0,1.0)
prepro_each(args,"test",testIds,0.0,1.0)