-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference_DM.py
35 lines (26 loc) · 1.08 KB
/
inference_DM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from share import *
import pytorch_lightning as pl
from torch.utils.data import DataLoader
from dataset_DM import ValidDataset
from cldm.model import create_model, load_state_dict
# Configs
resume_path = "/home/pod/shared-nvme/tensorboard/logs/OCT_DM/lightning_logs/DM_global512_resume/checkpoints/epoch=182-step=17201.ckpt"
batch_size = 8
# First use cpu to load models. Pytorch Lightning will automatically move it to GPUs.
model = create_model('./models/cldm_v15.yaml').cpu()
if resume_path:
model.load_state_dict(load_state_dict(resume_path, location='cpu'))
save_dir = "/home/pod/shared-nvme/tensorboard/logs/OCT_DM"
# Misc
dataset = ValidDataset("/home/pod/shared-nvme/data/EyeOCT/val")
dataloader = DataLoader(dataset, num_workers=14, batch_size=batch_size, shuffle=False)
trainer = pl.Trainer(strategy='ddp', gpus=2, precision=32, default_root_dir=save_dir)
trainer.test(model, dataloader)
"""
conda activate 2024-eye
cd /home/pod/project/code/EyeOCT
python inference_DM.py
nvitop
cd /home/pod/project/code/EyeOCT/log_valid/1124-1830/samples
zip submit.zip -r ./ ; mv submit.zip ../
"""