-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy pathmain.py
113 lines (89 loc) · 4.57 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import glob
import os
import numpy as np
import pandas as pd
from experiments import run_extremes_experiment, run_multivariate_experiment, run_multi_dim_multivariate_experiment, \
announce_experiment, run_multivariate_polluted_experiment, run_different_window_sizes_evaluator
from src.algorithms import AutoEncoder, DAGMM, RecurrentEBM, LSTMAD, LSTMED
from src.datasets import KDDCup, RealPickledDataset
from src.evaluation import Evaluator
RUNS = 1
def main():
run_experiments()
def detectors(seed):
standard_epochs = 40
dets = [AutoEncoder(num_epochs=standard_epochs, seed=seed),
DAGMM(num_epochs=standard_epochs, seed=seed, lr=1e-4),
DAGMM(num_epochs=standard_epochs, autoencoder_type=DAGMM.AutoEncoder.LSTM, seed=seed),
LSTMAD(num_epochs=standard_epochs, seed=seed), LSTMED(num_epochs=standard_epochs, seed=seed),
RecurrentEBM(num_epochs=standard_epochs, seed=seed)]
return sorted(dets, key=lambda x: x.framework)
def run_experiments():
# Set the seed manually for reproducibility.
seeds = np.random.randint(np.iinfo(np.uint32).max, size=RUNS, dtype=np.uint32)
output_dir = 'reports/experiments'
evaluators = []
outlier_height_steps = 10
for outlier_type in ['extreme_1', 'shift_1', 'variance_1', 'trend_1']:
announce_experiment('Outlier Height')
ev_extr = run_extremes_experiment(
detectors, seeds, RUNS, outlier_type, steps=outlier_height_steps,
output_dir=os.path.join(output_dir, outlier_type, 'intensity'))
evaluators.append(ev_extr)
announce_experiment('Multivariate Datasets')
ev_mv = run_multivariate_experiment(
detectors, seeds, RUNS,
output_dir=os.path.join(output_dir, 'multivariate'))
evaluators.append(ev_mv)
for mv_anomaly in ['doubled', 'inversed', 'shrinked', 'delayed', 'xor', 'delayed_missing']:
announce_experiment(f'Multivariate Polluted {mv_anomaly} Datasets')
ev_mv = run_multivariate_polluted_experiment(
detectors, seeds, RUNS, mv_anomaly,
output_dir=os.path.join(output_dir, 'mv_polluted'))
evaluators.append(ev_mv)
announce_experiment(f'High-dimensional multivariate {mv_anomaly} outliers')
ev_mv_dim = run_multi_dim_multivariate_experiment(
detectors, seeds, RUNS, mv_anomaly, steps=20,
output_dir=os.path.join(output_dir, 'multi_dim_mv'))
evaluators.append(ev_mv_dim)
announce_experiment('Long-Term Experiments')
ev_different_windows = run_different_window_sizes_evaluator(different_window_detectors, seeds, RUNS)
evaluators.append(ev_different_windows)
for ev in evaluators:
ev.plot_single_heatmap()
def evaluate_real_datasets():
REAL_DATASET_GROUP_PATH = 'data/raw/'
real_dataset_groups = glob.glob(REAL_DATASET_GROUP_PATH + '*')
seeds = np.random.randint(np.iinfo(np.uint32).max, size=RUNS, dtype=np.uint32)
results = pd.DataFrame()
datasets = [KDDCup(seed=1)]
for real_dataset_group in real_dataset_groups:
for data_set_path in glob.glob(real_dataset_group + '/labeled/train/*'):
data_set_name = data_set_path.split('/')[-1].replace('.pkl', '')
dataset = RealPickledDataset(data_set_name, data_set_path)
datasets.append(dataset)
for seed in seeds:
datasets[0] = KDDCup(seed)
evaluator = Evaluator(datasets, detectors, seed=seed)
evaluator.evaluate()
result = evaluator.benchmarks()
evaluator.plot_roc_curves()
evaluator.plot_threshold_comparison()
evaluator.plot_scores()
results = results.append(result, ignore_index=True)
avg_results = results.groupby(['dataset', 'algorithm'], as_index=False).mean()
evaluator.set_benchmark_results(avg_results)
evaluator.export_results('run_real_datasets')
evaluator.create_boxplots(runs=RUNS, data=results, detectorwise=False)
evaluator.create_boxplots(runs=RUNS, data=results, detectorwise=True)
def different_window_detectors(seed):
standard_epochs = 40
dets = [LSTMAD(num_epochs=standard_epochs)]
for window_size in [13, 25, 50, 100]:
dets.extend([LSTMED(name='LSTMED Window: ' + str(window_size), num_epochs=standard_epochs, seed=seed,
sequence_length=window_size), AutoEncoder(name='AE Window: ' + str(window_size),
num_epochs=standard_epochs, seed=seed,
sequence_length=window_size)])
return dets
if __name__ == '__main__':
main()