-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtracker.py
421 lines (345 loc) · 13.8 KB
/
tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import os
import sys
import time
import operator
import logging
import requests
import json
import re
import docx
import subprocess
import codecs
from watchdog.observers import Observer
from watchdog.events import FileSystemEventHandler
from watchdog.events import FileModifiedEvent
from watchdog.events import FileCreatedEvent
from pdfminer.pdfpage import PDFPage
from pdfminer.pdfparser import PDFParser
from pdfminer.pdfdocument import PDFDocument
from pdfminer.pdfdocument import PDFNoOutlines
from nltk.stem import WordNetLemmatizer
class GamificationHandler(FileSystemEventHandler):
def __init__(self, paper_filename, publish_url, paper_id):
FileSystemEventHandler.__init__(self) # super init
self.paper_filename = paper_filename
self.is_pdf = paper_filename.endswith('pdf')
self.publish_url = publish_url
self.paper_id = paper_id
self.reset_stats()
logging.info(
"Creating a GamificationHandler with paper: " + paper_filename +
" publish_url: " + publish_url +
" and paper id: " + paper_id
)
def reset_stats(self):
self.stats = {}
self.words = {}
self.paragraphs = []
self.num_words = 0
self.total_word_len = 0
self.pages = None
def on_created(self, event):
# MAIN CALLBACK - a file got created
logging.info("Create event occurred: " + event.src_path)
if type(event) == FileCreatedEvent:
logging.info("A file was created: " + event.src_path)
self.analyze_file_event(event)
def on_modified(self, event):
# MAIN CALLBACK - a file got modified
logging.info("Modify event occurred: " + event.src_path)
if type(event) == FileModifiedEvent:
logging.info("A file was modified: " + event.src_path)
self.analyze_file_event(event)
def analyze_file_event(self, event):
paper_path = os.path.abspath(self.paper_filename)
logging.info("Checking if it was the paper: " + paper_path)
if paper_path == event.src_path:
logging.info("Paper change detected, calculating statistics ...")
self.analyze_paper()
def analyze_paper(self):
self.reset_stats()
self.parse_file()
self.calculate_statistics()
logging.info("Publishing ...")
self.publish()
logging.info("Published!")
def parse_paragraphs(self, text):
# Will only work for markdown elements
# divided by '##' markers
# or for pdf like chapters, e.g. \n\n 2 Conclusion \n\n
lines = text.split('\n')
headlines = []
if self.is_pdf:
with open(self.paper_filename, 'rb') as pdf:
parser = PDFParser(pdf)
document = PDFDocument(parser)
try:
outlines = document.get_outlines()
for (level, title, _, _, _) in outlines:
if level == 1:
headlines.append(title)
except PDFNoOutlines:
logging.info(
"No outline found -> skipping paragraph search..."
)
else: # check markdown headlines
for index, line in enumerate(lines):
if line.startswith('## '):
headlines.append(line)
if len(headlines) > 0:
self.count_paragraphs(text, lines, headlines)
def compress_line(self, line):
return line.replace(' ', '').lower()
def count_paragraphs(self, text, lines, headlines):
old_headline = ""
compressed_headlines = list(self.compress_line(h) for h in headlines)
for line in lines:
compressed_line = self.compress_line(line)
if line in headlines or compressed_line in compressed_headlines:
if old_headline != "":
# Count previous paragraph
paragraph = text.split(old_headline)[1].split(line)[0]
if self.is_pdf:
old_headline = headlines[
compressed_headlines.index(compressed_line) - 1
]
self.count_paragraph_words(old_headline, paragraph)
old_headline = line
# Count last paragraph
if old_headline != "":
paragraph = text.split(old_headline)[1]
if self.is_pdf:
old_headline = headlines[-1]
self.count_paragraph_words(old_headline, paragraph)
def count_paragraph_words(self, line, paragraph):
num_words = len(re.findall(r"[\w']+", paragraph))
self.paragraphs.append((line.replace('#', '').strip(), num_words))
def parse_text_statistics(self, text):
wnl = WordNetLemmatizer()
for w in text:
word = wnl.lemmatize(w.strip().lower())
# Add to total_word_len
# to determine average word length later
self.total_word_len += len(word)
# Count distinct words with occurrences
if word not in self.words:
self.words[word] = 0
self.words[word] += 1
# Count all words
self.num_words += 1
def get_pages(self):
fp = open(self.paper_filename, 'rb')
self.pages = 0
for page in PDFPage.get_pages(fp):
self.pages += 1
fp.close()
def parse_pdf_file(self):
# Convert pdf to txt
tmp_filename = "tmpExtracted.txt"
pdf_convert_exit_id = subprocess.call(
["pdf2txt.py", "-o", tmp_filename, self.paper_filename]
)
if pdf_convert_exit_id == 0:
logging.info("\t\t\tSuccessfully converted pdf to txt")
# Analyse plain text
logging.info("\t\t\tAnalyzing file")
text = self.analyze_file(tmp_filename)
logging.info("\t\t\tParsing paragraphs ...")
self.parse_paragraphs(text)
logging.info("\t\t\tGetting pages ...")
self.get_pages()
def parse_word_file(self):
# Read file
document = docx.Document(self.paper_filename)
text = ""
for p in document.paragraphs:
text += p.text + '\n'
word_split = re.findall(r"[\w']+", text)
# Analyse
self.parse_text_statistics(word_split)
def parse_text_file(self):
text = self.analyze_file(self.paper_filename)
self.parse_paragraphs(text)
def analyze_file(self, filename):
f = codecs.open(filename, "r", "utf-8")
text = ""
for line in f.readlines():
text += line
word_split = re.findall(r"[\w']+", line)
# Analyse
self.parse_text_statistics(word_split)
f.close()
return text
def parse_file(self):
logging.info("\tParsing the paper ...")
if self.paper_filename.endswith(".docx"):
logging.info("\t\tusing docx parser ...")
self.parse_word_file()
elif self.paper_filename.endswith(".pdf"):
logging.info("\t\tusing pdf parser ...")
self.parse_pdf_file()
else:
logging.info("\t\tusing txt parser ...")
self.parse_text_file()
def calculate_statistics(self):
# By now, text-statistics should be saved in instance variables
# Determine interesting words
logging.info("\tCalculating interesting words ...")
interesting_words = self.get_interesting_words(40)
# Determine average word length
logging.info("\tCalculating average word length ...")
avg_len = float(self.total_word_len) / float(self.num_words)
# Determine Oxford coverage
logging.info("\tCalculating oxford coverage ...")
oxford_coverage = self.get_coverage("./oxford.txt")
# Determine Fancy word coverage
logging.info("\tCalculating fancy words coverage ...")
fancy_coverage = self.get_coverage("./fancy.txt")
# Determine academic word list coverage
logging.info("\tCalculating academic word list coverage ...")
awl_coverage = self.get_awl_coverage("./awl.txt")
# Build stats together
logging.info("\tBuilding stats together ...")
self.stats = {
"num_words": self.num_words,
"different_words": len(self.words),
"avg_len": avg_len,
"paragraphs": self.paragraphs,
"interesting_words": interesting_words,
"oxford_coverage": {
"total": oxford_coverage["total"],
"num_hits": len(oxford_coverage["hits"])
},
"fancy_coverage": {
"total": fancy_coverage["total"],
"num_hits": len(fancy_coverage["hits"])
},
"awl_coverage": {
"words_total": awl_coverage["words_total"],
"words_hits": awl_coverage["words_hits"],
"category_total": awl_coverage["category_total"],
"category_num_hits": awl_coverage["category_num_hits"],
"category_hits": awl_coverage["category_hits"]
}
}
if self.pages is not None:
self.stats["pages"] = self.pages
logging.info("\tStats: " + str(self.stats))
def get_interesting_words(self, num):
sorted_words = sorted(
self.words.iteritems(), key=operator.itemgetter(1), reverse=True
)
interesting_words = []
num = min(num, len(sorted_words))
min_len = 10
while len(interesting_words) != num:
# As long as we don't have as many words as we want
for word in sorted_words:
if len(word[0]) >= min_len:
if word[1] == 1:
# Word only occurs once in the text
# -> since sorted_words is sorted by occurrence:
# break and go down with min word length
break
if word not in interesting_words:
interesting_words.append(word)
if len(interesting_words) == num:
# Got enough words, break will break both loops
break
min_len -= 1
if min_len < 2:
# Text contains really few words, we just have to add them
# until we have enough
for word in sorted_words:
if word not in interesting_words:
interesting_words.append(word)
if len(interesting_words) == num:
# Got enough words, break will break both loops
break
# Sort result and return
interesting_words = sorted(
interesting_words, key=operator.itemgetter(1), reverse=True
)
return interesting_words
def get_coverage(self, filename):
""" Reads a list of words and compares it to the own words"""
words = []
num_words = 0
# Count and compare
f = open(filename)
for word in f.readlines():
if word.strip() != "":
words.append(word.strip().lower())
num_words += 1
f.close()
hits = set(words).intersection(set(self.words.keys()))
return {"total": num_words, "hits": list(hits)}
def get_awl_coverage(self, filename):
words = {}
f = open(filename)
category = ""
for word in f.readlines():
if not word.startswith('\t'):
category = word.strip()
words[word.strip()] = category
hits = set(words.keys()).intersection(set(self.words.keys()))
category_hits = {}
for category in set(words.values()):
category_hits[category] = 0
for hit in hits:
category_hits[words[hit]] += 1
category_num_hits = 0
for key in category_hits.keys():
if category_hits[key] > 0:
category_num_hits += 1
return {
"words_total": len(words),
"words_hits": len(list(hits)),
"category_total": len(list(set(words.values()))),
"category_num_hits": category_num_hits,
"category_hits": category_hits
}
def publish(self):
payload = {"stats": json.dumps(self.stats)}
requests.put(
self.publish_url + "/papers/" + self.paper_id + ".json",
data=payload
)
def set_paper_alive(publish_url, paper_id, alive):
payload = {"alive": str(alive).lower()}
requests.put(
publish_url + "/papers/" + paper_id + ".json",
params=payload
)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
if len(sys.argv) != 4:
print "Usage: python tracker.py <paper-file> <publish-host> <paper-id>"
sys.exit()
# Parse command line params
filename = sys.argv[1]
publish_url = sys.argv[2]
paper_id = sys.argv[3]
path = os.path.dirname(os.path.abspath(filename))
# Enable "Currently writing..."
set_paper_alive(publish_url, paper_id, True)
# Observer setup
event_handler = GamificationHandler(filename, publish_url, paper_id)
observer = Observer()
logging.info("Starting observer with watch path: " + path)
observer.schedule(event_handler, path=path, recursive=True)
# Observer start
observer.start()
logging.info("Observer started.")
# Trigger an initial paper analysis
event_handler.analyze_paper()
try:
while True:
time.sleep(1)
except KeyboardInterrupt:
# Disable "Currently writing..."
set_paper_alive(publish_url, paper_id, False)
observer.stop()
observer.join()