-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOpenSimplex2F.java
931 lines (797 loc) · 36.6 KB
/
OpenSimplex2F.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
/**
* K.jpg's OpenSimplex 2, faster variant ("Fast Simplex-Style Noise")
* With area generators.
*
* - 2D is standard simplex implemented using a lookup table.
* - 3D is "Re-oriented 4-point BCC noise" which constructs an
* isomorphic BCC lattice in a much different way than usual.
*
* Multiple versions of each function are provided. See the
* documentation above each, for more info.
*/
import java.util.Queue;
import java.util.LinkedList;
import java.util.Set;
import java.util.HashSet;
public class OpenSimplex2F {
private static final int PSIZE = 2048;
private static final int PMASK = 2047;
private short[] perm;
private Grad2[] permGrad2;
private Grad3[] permGrad3;
public OpenSimplex2F(long seed) {
perm = new short[PSIZE];
permGrad2 = new Grad2[PSIZE];
permGrad3 = new Grad3[PSIZE];
short[] source = new short[PSIZE];
for (short i = 0; i < PSIZE; i++)
source[i] = i;
for (int i = PSIZE - 1; i >= 0; i--) {
seed = seed * 6364136223846793005L + 1442695040888963407L;
int r = (int)((seed + 31) % (i + 1));
if (r < 0)
r += (i + 1);
perm[i] = source[r];
permGrad2[i] = GRADIENTS_2D[perm[i]];
permGrad3[i] = GRADIENTS_3D[perm[i]];
source[r] = source[i];
}
}
/*
* Traditional evaluators
*/
/**
* 2D Simplex noise, standard lattice orientation.
*/
public double noise2(double x, double y) {
// Get points for A2* lattice
double s = 0.366025403784439 * (x + y);
double xs = x + s, ys = y + s;
return noise2_Base(xs, ys);
}
/**
* 2D Simplex noise, with Y pointing down the main diagonal.
* Might be better for a 2D sandbox style game, where Y is vertical.
* Probably slightly less optimal for heightmaps or continent maps.
*/
public double noise2_XBeforeY(double x, double y) {
// Skew transform and rotation baked into one.
double xx = x * 0.7071067811865476;
double yy = y * 1.224744871380249;
return noise2_Base(yy + xx, yy - xx);
}
/**
* 2D Simplex noise base.
* Lookup table implementation inspired by DigitalShadow.
*/
private double noise2_Base(double xs, double ys) {
double value = 0;
// Get base points and offsets
int xsb = fastFloor(xs), ysb = fastFloor(ys);
double xsi = xs - xsb, ysi = ys - ysb;
// Index to point list
int index = (int)((ysi - xsi) / 2 + 1) * 3;
double ssi = (xsi + ysi) * -0.211324865405187;
double xi = xsi + ssi, yi = ysi + ssi;
// Point contributions
for (int i = 0; i < 3; i++) {
LatticePoint2D c = LOOKUP_2D[index + i];
double dx = xi + c.dx, dy = yi + c.dy;
double attn = 0.5 - dx * dx - dy * dy;
if (attn <= 0) continue;
int pxm = (xsb + c.xsv) & PMASK, pym = (ysb + c.ysv) & PMASK;
Grad2 grad = permGrad2[perm[pxm] ^ pym];
double extrapolation = grad.dx * dx + grad.dy * dy;
attn *= attn;
value += attn * attn * extrapolation;
}
return value;
}
/**
* 3D Re-oriented 4-point BCC noise, classic orientation.
* Proper substitute for 3D Simplex in light of Forbidden Formulae.
* Use noise3_XYBeforeZ or noise3_XZBeforeY instead, wherever appropriate.
*/
public double noise3_Classic(double x, double y, double z) {
// Re-orient the cubic lattices via rotation, to produce the expected look on cardinal planar slices.
// If texturing objects that don't tend to have cardinal plane faces, you could even remove this.
// Orthonormal rotation. Not a skew transform.
double r = (2.0 / 3.0) * (x + y + z);
double xr = r - x, yr = r - y, zr = r - z;
// Evaluate both lattices to form a BCC lattice.
return noise3_BCC(xr, yr, zr);
}
/**
* 3D Re-oriented 4-point BCC noise, with better visual isotropy in (X, Y).
* Recommended for 3D terrain and time-varied animations.
* The Z coordinate should always be the "different" coordinate in your use case.
* If Y is vertical in world coordinates, call noise3_XYBeforeZ(x, z, Y) or use noise3_XZBeforeY.
* If Z is vertical in world coordinates, call noise3_XYBeforeZ(x, y, Z).
* For a time varied animation, call noise3_XYBeforeZ(x, y, T).
*/
public double noise3_XYBeforeZ(double x, double y, double z) {
// Re-orient the cubic lattices without skewing, to make X and Y triangular like 2D.
// Orthonormal rotation. Not a skew transform.
double xy = x + y;
double s2 = xy * -0.211324865405187;
double zz = z * 0.577350269189626;
double xr = x + s2 - zz, yr = y + s2 - zz;
double zr = xy * 0.577350269189626 + zz;
// Evaluate both lattices to form a BCC lattice.
return noise3_BCC(xr, yr, zr);
}
/**
* 3D Re-oriented 4-point BCC noise, with better visual isotropy in (X, Z).
* Recommended for 3D terrain and time-varied animations.
* The Y coordinate should always be the "different" coordinate in your use case.
* If Y is vertical in world coordinates, call noise3_XZBeforeY(x, Y, z).
* If Z is vertical in world coordinates, call noise3_XZBeforeY(x, Z, y) or use noise3_XYBeforeZ.
* For a time varied animation, call noise3_XZBeforeY(x, T, y) or use noise3_XYBeforeZ.
*/
public double noise3_XZBeforeY(double x, double y, double z) {
// Re-orient the cubic lattices without skewing, to make X and Z triangular like 2D.
// Orthonormal rotation. Not a skew transform.
double xz = x + z;
double s2 = xz * -0.211324865405187;
double yy = y * 0.577350269189626;
double xr = x + s2 - yy; double zr = z + s2 - yy;
double yr = xz * 0.577350269189626 + yy;
// Evaluate both lattices to form a BCC lattice.
return noise3_BCC(xr, yr, zr);
}
/**
* Generate overlapping cubic lattices for 3D Re-oriented BCC noise.
* Lookup table implementation inspired by DigitalShadow.
* It was actually faster to narrow down the points in the loop itself,
* than to build up the index with enough info to isolate 4 points.
*/
private double noise3_BCC(double xr, double yr, double zr) {
// Get base and offsets inside cube of first lattice.
int xrb = fastFloor(xr), yrb = fastFloor(yr), zrb = fastFloor(zr);
double xri = xr - xrb, yri = yr - yrb, zri = zr - zrb;
// Identify which octant of the cube we're in. This determines which cell
// in the other cubic lattice we're in, and also narrows down one point on each.
int xht = (int)(xri + 0.5), yht = (int)(yri + 0.5), zht = (int)(zri + 0.5);
int index = (xht << 0) | (yht << 1) | (zht << 2);
// Point contributions
double value = 0;
LatticePoint3D c = LOOKUP_3D[index];
while (c != null) {
double dxr = xri + c.dxr, dyr = yri + c.dyr, dzr = zri + c.dzr;
double attn = 0.5 - dxr * dxr - dyr * dyr - dzr * dzr;
if (attn < 0) {
c = c.nextOnFailure;
} else {
int pxm = (xrb + c.xrv) & PMASK, pym = (yrb + c.yrv) & PMASK, pzm = (zrb + c.zrv) & PMASK;
Grad3 grad = permGrad3[perm[perm[pxm] ^ pym] ^ pzm];
double extrapolation = grad.dx * dxr + grad.dy * dyr + grad.dz * dzr;
attn *= attn;
value += attn * attn * extrapolation;
c = c.nextOnSuccess;
}
}
return value;
}
/*
* Area Generators
*/
/**
* Generate the 2D noise over a large area.
* Propagates by flood-fill instead of iterating over a range.
* Results may occasionally slightly exceed [-1, 1] due to the grid-snapped pre-generated kernel.
*/
public void generate2(GenerateContext2D context, double[][] buffer, int x0, int y0) {
int height = buffer.length;
int width = buffer[0].length;
generate2(context, buffer, x0, y0, width, height, 0, 0);
}
/**
* Generate the 2D noise over a large area.
* Propagates by flood-fill instead of iterating over a range.
* Results may occasionally slightly exceed [-1, 1] due to the grid-snapped pre-generated kernel.
*/
public void generate2(GenerateContext2D context, double[][] buffer, int x0, int y0, int width, int height, int skipX, int skipY) {
Queue<AreaGenLatticePoint2D> queue = new LinkedList<AreaGenLatticePoint2D>();
Set<AreaGenLatticePoint2D> seen = new HashSet<AreaGenLatticePoint2D>();
int scaledRadiusX = context.scaledRadiusX;
int scaledRadiusY = context.scaledRadiusY;
double[][] kernel = context.kernel;
int x0Skipped = x0 + skipX, y0Skipped = y0 + skipY;
// It seems that it's better for performance, to create a local copy.
// - Slightly faster than generating the kernel here.
// - Much faster than referencing it directly from the context object.
// - Much faster than computing the kernel equation every time.
// You can remove these lines if you find it's the opposite for you.
// You'll have to double the bounds again in GenerateContext2D
kernel = new double[scaledRadiusY * 2][/*scaledRadiusX * 2*/];
for (int yy = 0; yy < scaledRadiusY; yy++) {
kernel[2 * scaledRadiusY - yy - 1] = kernel[yy] = (double[]) context.kernel[yy].clone();
}
// Get started with one point/vertex.
// For some lattices, you might need to try a handful of points in the cell,
// or flip a couple of coordinates, to guarantee it or a neighbor contributes.
// For An* lattices, the base coordinate seems fine.
double x0f = x0Skipped * context.xFrequency; double y0f = y0Skipped * context.yFrequency;
double x0s = context.orientation.s00 * x0f + context.orientation.s01 * y0f;
double y0s = context.orientation.s10 * x0f + context.orientation.s11 * y0f;
int x0sb = fastFloor(x0s), y0sb = fastFloor(y0s);
AreaGenLatticePoint2D firstPoint = new AreaGenLatticePoint2D(context, x0sb, y0sb);
queue.add(firstPoint);
seen.add(firstPoint);
while (!queue.isEmpty()) {
AreaGenLatticePoint2D point = queue.remove();
int destPointX = point.destPointX;
int destPointY = point.destPointY;
// Prepare gradient vector
int pxm = point.xsv & PMASK, pym = point.ysv & PMASK;
Grad2 grad = context.orientation.gradients[perm[perm[pxm] ^ pym]];
double gx = grad.dx * context.xFrequency;
double gy = grad.dy * context.yFrequency;
double gOff = 0.5 * (gx + gy); // to correct for (0.5, 0.5)-offset kernel
// Contribution kernel bounds
int yy0 = destPointY - scaledRadiusY; if (yy0 < y0Skipped) yy0 = y0Skipped;
int yy1 = destPointY + scaledRadiusY; if (yy1 > y0 + height) yy1 = y0 + height;
// For each row of the contribution circle,
for (int yy = yy0; yy < yy1; yy++) {
int dy = yy - destPointY;
int ky = dy + scaledRadiusY;
// Set up bounds so we only loop over what we need to
int thisScaledRadiusX = context.kernelBounds[ky];
int xx0 = destPointX - thisScaledRadiusX; if (xx0 < x0Skipped) xx0 = x0Skipped;
int xx1 = destPointX + thisScaledRadiusX; if (xx1 > x0 + width) xx1 = x0 + width;
// For each point on that row
for (int xx = xx0; xx < xx1; xx++) {
int dx = xx - destPointX;
int kx = dx + scaledRadiusX;
// gOff accounts for our choice to offset the pre-generated kernel by (0.5, 0.5) to avoid the zero center.
// I found almost no difference in performance using gOff vs not (under 1ns diff per value on my system)
double extrapolation = gx * dx + gy * dy + gOff;
buffer[yy - y0][xx - x0] += kernel[ky][kx] * extrapolation;
}
}
// For each neighbor of the point
for (int i = 0; i < NEIGHBOR_MAP_2D.length; i++) {
AreaGenLatticePoint2D neighbor = new AreaGenLatticePoint2D(context,
point.xsv + NEIGHBOR_MAP_2D[i][0], point.ysv + NEIGHBOR_MAP_2D[i][1]);
// If it's in range of the buffer region and not seen before
if (neighbor.destPointX + scaledRadiusX >= x0Skipped && neighbor.destPointX - scaledRadiusX <= x0 + width - 1
&& neighbor.destPointY + scaledRadiusY >= y0Skipped && neighbor.destPointY - scaledRadiusY <= y0 + height - 1
&& !seen.contains(neighbor)) {
// Add it to the queue so we can process it at some point
queue.add(neighbor);
// Add it to the set so we don't add it to the queue again
seen.add(neighbor);
}
}
}
}
/**
* Generate the 3D noise over a large area/volume.
* Propagates by flood-fill instead of iterating over a range.
* Results may occasionally slightly exceed [-1, 1] due to the grid-snapped pre-generated kernel.
*/
public void generate3(GenerateContext3D context, double[][][] buffer, int x0, int y0, int z0) {
int depth = buffer.length;
int height = buffer[0].length;
int width = buffer[0][0].length;
generate3(context, buffer, x0, y0, z0, width, height, depth, 0, 0, 0);
}
/**
* Generate the 3D noise over a large area/volume.
* Propagates by flood-fill instead of iterating over a range.
* Results may occasionally slightly exceed [-1, 1] due to the grid-snapped pre-generated kernel.
*/
public void generate3(GenerateContext3D context, double[][][] buffer, int x0, int y0, int z0, int width, int height, int depth, int skipX, int skipY, int skipZ) {
Queue<AreaGenLatticePoint3D> queue = new LinkedList<AreaGenLatticePoint3D>();
Set<AreaGenLatticePoint3D> seen = new HashSet<AreaGenLatticePoint3D>();
int scaledRadiusX = context.scaledRadiusX;
int scaledRadiusY = context.scaledRadiusY;
int scaledRadiusZ = context.scaledRadiusZ;
double[][][] kernel = context.kernel;
int x0Skipped = x0 + skipX, y0Skipped = y0 + skipY, z0Skipped = z0 + skipZ;
// Quaternion multiplication for rotation.
// https://blog.molecular-matters.com/2013/05/24/a-faster-quaternion-vector-multiplication/
double qx = context.orientation.qx, qy = context.orientation.qy, qz = context.orientation.qz, qw = context.orientation.qw;
double x0f = x0Skipped * context.xFrequency, y0f = y0Skipped * context.yFrequency, z0f = z0Skipped * context.zFrequency;
double tx = 2 * (qy * z0f - qz * y0f);
double ty = 2 * (qz * x0f - qx * z0f);
double tz = 2 * (qx * y0f - qy * x0f);
double x0r = x0f + qw * tx + (qy * tz - qz * ty);
double y0r = y0f + qw * ty + (qz * tx - qx * tz);
double z0r = z0f + qw * tz + (qx * ty - qy * tx);
int x0rb = fastFloor(x0r), y0rb = fastFloor(y0r), z0rb = fastFloor(z0r);
AreaGenLatticePoint3D firstPoint = new AreaGenLatticePoint3D(context, x0rb, y0rb, z0rb, 0);
queue.add(firstPoint);
seen.add(firstPoint);
while (!queue.isEmpty()) {
AreaGenLatticePoint3D point = queue.remove();
int destPointX = point.destPointX;
int destPointY = point.destPointY;
int destPointZ = point.destPointZ;
// Prepare gradient vector
int pxm = point.xsv & PMASK, pym = point.ysv & PMASK, pzm = point.zsv & PMASK;
Grad3 grad = context.orientation.gradients[perm[perm[perm[pxm] ^ pym] ^ pzm]];
double gx = grad.dx * context.xFrequency;
double gy = grad.dy * context.yFrequency;
double gz = grad.dz * context.zFrequency;
double gOff = 0.5 * (gx + gy + gz); // to correct for (0.5, 0.5, 0.5)-offset kernel
// Contribution kernel bounds.
int zz0 = destPointZ - scaledRadiusZ; if (zz0 < z0Skipped) zz0 = z0Skipped;
int zz1 = destPointZ + scaledRadiusZ; if (zz1 > z0 + depth) zz1 = z0 + depth;
// For each x/y slice of the contribution sphere,
for (int zz = zz0; zz < zz1; zz++) {
int dz = zz - destPointZ;
int kz = dz + scaledRadiusZ;
// Set up bounds so we only loop over what we need to
int thisScaledRadiusY = context.kernelBoundsY[kz];
int yy0 = destPointY - thisScaledRadiusY; if (yy0 < y0Skipped) yy0 = y0Skipped;
int yy1 = destPointY + thisScaledRadiusY; if (yy1 > y0 + height) yy1 = y0 + height;
// For each row of the contribution circle,
for (int yy = yy0; yy < yy1; yy++) {
int dy = yy - destPointY;
int ky = dy + scaledRadiusY;
// Set up bounds so we only loop over what we need to
int thisScaledRadiusX = context.kernelBoundsX[kz][ky];
int xx0 = destPointX - thisScaledRadiusX; if (xx0 < x0Skipped) xx0 = x0Skipped;
int xx1 = destPointX + thisScaledRadiusX; if (xx1 > x0 + width) xx1 = x0 + width;
// For each point on that row
for (int xx = xx0; xx < xx1; xx++) {
int dx = xx - destPointX;
int kx = dx + scaledRadiusX;
// gOff accounts for our choice to offset the pre-generated kernel by (0.5, 0.5, 0.5) to avoid the zero center.
double extrapolation = gx * dx + gy * dy + gz * dz + gOff;
buffer[zz - z0][yy - y0][xx - x0] += kernel[kz][ky][kx] * extrapolation;
}
}
}
// For each neighbor of the point
for (int i = 0; i < NEIGHBOR_MAP_3D[0].length; i++) {
int l = point.lattice;
AreaGenLatticePoint3D neighbor = new AreaGenLatticePoint3D(context,
point.xsv + NEIGHBOR_MAP_3D[l][i][0], point.ysv + NEIGHBOR_MAP_3D[l][i][1], point.zsv + NEIGHBOR_MAP_3D[l][i][2], 1 ^ l);
// If it's in range of the buffer region and not seen before
if (neighbor.destPointX + scaledRadiusX >= x0Skipped && neighbor.destPointX - scaledRadiusX <= x0 + width - 1
&& neighbor.destPointY + scaledRadiusY >= y0Skipped && neighbor.destPointY - scaledRadiusY <= y0 + height - 1
&& neighbor.destPointZ + scaledRadiusZ >= z0Skipped && neighbor.destPointZ - scaledRadiusZ <= z0 + depth - 1
&& !seen.contains(neighbor)) {
// Add it to the queue so we can process it at some point
queue.add(neighbor);
// Add it to the set so we don't add it to the queue again
seen.add(neighbor);
}
}
}
}
/*
* Utility
*/
private static int fastFloor(double x) {
int xi = (int)x;
return x < xi ? xi - 1 : xi;
}
/*
* Definitions
*/
private static final LatticePoint2D[] LOOKUP_2D;
private static final LatticePoint3D[] LOOKUP_3D;
static {
LOOKUP_2D = new LatticePoint2D[2 * 3];
LOOKUP_3D = new LatticePoint3D[8];
for (int i = 0; i < 2; i++) {
int i1, j1;
if ((i & 1) == 0) { i1 = 1; j1 = 0; }
else { i1 = 0; j1 = 1; }
LOOKUP_2D[i * 3 + 0] = new LatticePoint2D(0, 0);
LOOKUP_2D[i * 3 + 1] = new LatticePoint2D(1, 1);
LOOKUP_2D[i * 3 + 2] = new LatticePoint2D(i1, j1);
}
for (int i = 0; i < 8; i++) {
int i1, j1, k1, i2, j2, k2;
i1 = (i >> 0) & 1; j1 = (i >> 1) & 1; k1 = (i >> 2) & 1;
i2 = i1 ^ 1; j2 = j1 ^ 1; k2 = k1 ^ 1;
// The two points within this octant, one from each of the two cubic half-lattices.
LatticePoint3D c0 = new LatticePoint3D(i1, j1, k1, 0);
LatticePoint3D c1 = new LatticePoint3D(i1 + i2, j1 + j2, k1 + k2, 1);
// Each single step away on the first half-lattice.
LatticePoint3D c2 = new LatticePoint3D(i1 ^ 1, j1, k1, 0);
LatticePoint3D c3 = new LatticePoint3D(i1, j1 ^ 1, k1, 0);
LatticePoint3D c4 = new LatticePoint3D(i1, j1, k1 ^ 1, 0);
// Each single step away on the second half-lattice.
LatticePoint3D c5 = new LatticePoint3D(i1 + (i2 ^ 1), j1 + j2, k1 + k2, 1);
LatticePoint3D c6 = new LatticePoint3D(i1 + i2, j1 + (j2 ^ 1), k1 + k2, 1);
LatticePoint3D c7 = new LatticePoint3D(i1 + i2, j1 + j2, k1 + (k2 ^ 1), 1);
// First two are guaranteed.
c0.nextOnFailure = c0.nextOnSuccess = c1;
c1.nextOnFailure = c1.nextOnSuccess = c2;
// Once we find one on the first half-lattice, the rest are out.
// In addition, knowing c2 rules out c5.
c2.nextOnFailure = c3; c2.nextOnSuccess = c6;
c3.nextOnFailure = c4; c3.nextOnSuccess = c5;
c4.nextOnFailure = c4.nextOnSuccess = c5;
// Once we find one on the second half-lattice, the rest are out.
c5.nextOnFailure = c6; c5.nextOnSuccess = null;
c6.nextOnFailure = c7; c6.nextOnSuccess = null;
c7.nextOnFailure = c7.nextOnSuccess = null;
LOOKUP_3D[i] = c0;
}
}
// Hexagon surrounding each vertex.
private static final int[][] NEIGHBOR_MAP_2D = {
{ 1, 0 }, { 1, 1 }, { 0, 1 }, { 0, -1 }, { -1, -1 }, { -1, 0 }
};
// Cube surrounding each vertex.
// Alternates between half-lattices.
private static final int[][][] NEIGHBOR_MAP_3D = {
{
{ 1024, 1024, 1024 }, { 1025, 1024, 1024 }, { 1024, 1025, 1024 }, { 1025, 1025, 1024 },
{ 1024, 1024, 1025 }, { 1025, 1024, 1025 }, { 1024, 1025, 1025 }, { 1025, 1025, 1025 }
},
{
{ -1024, -1024, -1024 }, { -1025, -1024, 1024 }, { -1024, -1025, -1024 }, { -1025, -1025, -1024 },
{ -1024, -1024, -1025 }, { -1025, -1024, -1025 }, { -1024, -1025, -1025 }, { -1025, -1025, 1025 }
},
};
private static class LatticePoint2D {
int xsv, ysv;
double dx, dy;
public LatticePoint2D(int xsv, int ysv) {
this.xsv = xsv; this.ysv = ysv;
double ssv = (xsv + ysv) * -0.211324865405187;
this.dx = -xsv - ssv;
this.dy = -ysv - ssv;
}
}
private static class LatticePoint3D {
public double dxr, dyr, dzr;
public int xrv, yrv, zrv;
LatticePoint3D nextOnFailure, nextOnSuccess;
public LatticePoint3D(int xrv, int yrv, int zrv, int lattice) {
this.dxr = -xrv + lattice * 0.5; this.dyr = -yrv + lattice * 0.5; this.dzr = -zrv + lattice * 0.5;
this.xrv = xrv + lattice * 1024; this.yrv = yrv + lattice * 1024; this.zrv = zrv + lattice * 1024;
}
}
private static class AreaGenLatticePoint2D {
int xsv, ysv;
int destPointX, destPointY;
public AreaGenLatticePoint2D(GenerateContext2D context, int xsv, int ysv) {
this.xsv = xsv; this.ysv = ysv;
//Matrix multiplication for inverse rotation. Simplex skew transforms have always been shorthand for matrices.
this.destPointX = (int)Math.ceil((context.orientation.t00 * xsv + context.orientation.t01 * ysv) * context.xFrequencyInverse);
this.destPointY = (int)Math.ceil((context.orientation.t10 * xsv + context.orientation.t11 * ysv) * context.yFrequencyInverse);
}
public int hashCode() {
return xsv * 7841 + ysv;
}
public boolean equals(Object obj) {
if (!(obj instanceof AreaGenLatticePoint2D)) return false;
AreaGenLatticePoint2D other = (AreaGenLatticePoint2D) obj;
return (other.xsv == this.xsv && other.ysv == this.ysv);
}
}
private static class AreaGenLatticePoint3D {
int xsv, ysv, zsv, lattice;
int destPointX, destPointY, destPointZ;
public AreaGenLatticePoint3D(GenerateContext3D context, int xsv, int ysv, int zsv, int lattice) {
this.xsv = xsv; this.ysv = ysv; this.zsv = zsv; this.lattice = lattice;
double xr = (xsv - lattice * 1024.5);
double yr = (ysv - lattice * 1024.5);
double zr = (zsv - lattice * 1024.5);
// Quaternion multiplication for inverse rotation.
// https://blog.molecular-matters.com/2013/05/24/a-faster-quaternion-vector-multiplication/
double qx = -context.orientation.qx, qy = -context.orientation.qy, qz = -context.orientation.qz, qw = context.orientation.qw;
double tx = 2 * (qy * zr - qz * yr);
double ty = 2 * (qz * xr - qx * zr);
double tz = 2 * (qx * yr - qy * xr);
double xrr = xr + qw * tx + (qy * tz - qz * ty);
double yrr = yr + qw * ty + (qz * tx - qx * tz);
double zrr = zr + qw * tz + (qx * ty - qy * tx);
this.destPointX = (int)Math.ceil(xrr * context.xFrequencyInverse);
this.destPointY = (int)Math.ceil(yrr * context.yFrequencyInverse);
this.destPointZ = (int)Math.ceil(zrr * context.zFrequencyInverse);
}
public int hashCode() {
return xsv * 2122193 + ysv * 2053 + zsv * 2 + lattice;
}
public boolean equals(Object obj) {
if (!(obj instanceof AreaGenLatticePoint3D)) return false;
AreaGenLatticePoint3D other = (AreaGenLatticePoint3D) obj;
return (other.xsv == this.xsv && other.ysv == this.ysv && other.zsv == this.zsv && other.lattice == this.lattice);
}
}
public static class GenerateContext2D {
double xFrequency;
double yFrequency;
double xFrequencyInverse;
double yFrequencyInverse;
int scaledRadiusX;
int scaledRadiusY;
double[][] kernel;
int[] kernelBounds;
LatticeOrientation2D orientation;
public GenerateContext2D(LatticeOrientation2D orientation, double xFrequency, double yFrequency, double amplitude) {
// These will be used by every call to generate
this.orientation = orientation;
this.xFrequency = xFrequency;
this.yFrequency = yFrequency;
this.xFrequencyInverse = 1.0 / xFrequency;
this.yFrequencyInverse = 1.0 / yFrequency;
double preciseScaledRadiusX = Math.sqrt(0.5) * xFrequencyInverse;
double preciseScaledRadiusY = Math.sqrt(0.5) * yFrequencyInverse;
// 0.25 because we offset center by 0.5
this.scaledRadiusX = (int)Math.ceil(preciseScaledRadiusX + 0.25);
this.scaledRadiusY = (int)Math.ceil(preciseScaledRadiusY + 0.25);
// So will these
kernel = new double[scaledRadiusY/* * 2*/][];
kernelBounds = new int[scaledRadiusY * 2];
for (int yy = 0; yy < scaledRadiusY * 2; yy++) {
// Pre-generate boundary of circle
kernelBounds[yy] = (int)Math.ceil(
Math.sqrt(1.0
- (yy + 0.5 - scaledRadiusY) * (yy + 0.5 - scaledRadiusY) / (scaledRadiusY * scaledRadiusY)
) * scaledRadiusX);
if (yy < scaledRadiusY) {
kernel[yy] = new double[scaledRadiusX * 2];
// Pre-generate kernel
for (int xx = 0; xx < scaledRadiusX * 2; xx++) {
double dx = (xx + 0.5 - scaledRadiusX) * xFrequency;
double dy = (yy + 0.5 - scaledRadiusY) * yFrequency;
double attn = 0.5 - dx * dx - dy * dy;
if (attn > 0) {
attn *= attn;
kernel[yy][xx] = attn * attn * amplitude;
} else {
kernel[yy][xx] = 0.0;
}
}
} /* else kernel[yy] = kernel[2 * scaledRadiusY - yy - 1];*/
}
}
}
public static class GenerateContext3D {
double xFrequency;
double yFrequency;
double zFrequency;
double xFrequencyInverse;
double yFrequencyInverse;
double zFrequencyInverse;
int scaledRadiusX;
int scaledRadiusY;
int scaledRadiusZ;
double[][][] kernel;
int[] kernelBoundsY;
int[][] kernelBoundsX;
LatticeOrientation3D orientation;
public GenerateContext3D(LatticeOrientation3D orientation, double xFrequency, double yFrequency, double zFrequency, double amplitude) {
// These will be used by every call to generate
this.orientation = orientation;
this.xFrequency = xFrequency;
this.yFrequency = yFrequency;
this.zFrequency = zFrequency;
this.xFrequencyInverse = 1.0 / xFrequency;
this.yFrequencyInverse = 1.0 / yFrequency;
this.zFrequencyInverse = 1.0 / zFrequency;
double preciseScaledRadiusX = Math.sqrt(0.5) * xFrequencyInverse;
double preciseScaledRadiusY = Math.sqrt(0.5) * yFrequencyInverse;
double preciseScaledRadiusZ = Math.sqrt(0.5) * zFrequencyInverse;
// 0.25 because we offset center by 0.5
this.scaledRadiusX = (int)Math.ceil(preciseScaledRadiusX + 0.25);
this.scaledRadiusY = (int)Math.ceil(preciseScaledRadiusY + 0.25);
this.scaledRadiusZ = (int)Math.ceil(preciseScaledRadiusZ + 0.25);
// So will these
kernel = new double[scaledRadiusZ * 2][][];
kernelBoundsY = new int[scaledRadiusZ * 2];
kernelBoundsX = new int[scaledRadiusZ * 2][];
for (int zz = 0; zz < scaledRadiusZ * 2; zz++) {
// Pre-generate boundary of sphere
kernelBoundsY[zz] = (int)Math.ceil(
Math.sqrt(1.0 - (zz + 0.5 - scaledRadiusZ) * (zz + 0.5 - scaledRadiusZ)
/ (scaledRadiusZ * scaledRadiusZ)) * scaledRadiusY);
if (zz < scaledRadiusZ) {
kernel[zz] = new double[scaledRadiusY * 2][];
kernelBoundsX[zz] = new int[scaledRadiusY * 2];
} else {
kernel[zz] = kernel[2 * scaledRadiusZ - zz - 1];
kernelBoundsX[zz] = kernelBoundsX[2 * scaledRadiusZ - zz - 1];
}
if (zz < scaledRadiusZ) {
for (int yy = 0; yy < scaledRadiusY * 2; yy++) {
// Pre-generate boundary of sphere
kernelBoundsX[zz][yy] = (int)Math.ceil(
Math.sqrt(1.0
- (yy + 0.5 - scaledRadiusY) * (yy + 0.5 - scaledRadiusY) / (scaledRadiusY * scaledRadiusY)
- (zz + 0.5 - scaledRadiusZ) * (zz + 0.5 - scaledRadiusZ) / (scaledRadiusZ * scaledRadiusZ)
) * scaledRadiusX);
if (yy < scaledRadiusY) {
kernel[zz][yy] = new double[scaledRadiusX * 2];
// Pre-generate kernel
for (int xx = 0; xx < scaledRadiusX * 2; xx++) {
double dx = (xx + 0.5 - scaledRadiusX) * xFrequency;
double dy = (yy + 0.5 - scaledRadiusY) * yFrequency;
double dz = (zz + 0.5 - scaledRadiusZ) * zFrequency;
double attn = 0.5 - dx * dx - dy * dy - dz * dz;
if (attn > 0) {
attn *= attn;
kernel[zz][yy][xx] = attn * attn * amplitude;
} else {
kernel[zz][yy][xx] = 0.0;
}
}
} else kernel[zz][yy] = kernel[zz][2 * scaledRadiusY - yy - 1];
}
}
}
}
}
public enum LatticeOrientation2D {
// Simplex skew transforms have always been shorthand for the matrices they represent.
// But when we bake the rotation into the skew transform, we need to use the general form.
Standard(GRADIENTS_2D,
1.366025403784439, 0.366025403784439, 0.366025403784439, 1.366025403784439,
0.788675134594813, -0.211324865405187, -0.211324865405187, 0.788675134594813),
XBeforeY(GRADIENTS_2D_X_BEFORE_Y,
0.7071067811865476, 1.224744871380249, -0.7071067811865476, 1.224744871380249,
0.7071067811865476, -0.7071067811865476, 0.40824829046764305, 0.40824829046764305);
Grad2[] gradients;
double s00, s01, s10, s11;
double t00, t01, t10, t11;
private LatticeOrientation2D(Grad2[] gradients,
double s00, double s01, double s10, double s11,
double t00, double t01, double t10, double t11) {
this.gradients = gradients;
this.s00 = s00; this.s01 = s01; this.s10 = s10; this.s11 = s11;
this.t00 = t00; this.t01 = t01; this.t10 = t10; this.t11 = t11;
}
}
public enum LatticeOrientation3D {
// Quaternions for 3D. Could use matrices, but I already wrote this code before I moved them into here.
Classic(GRADIENTS_3D_CLASSIC, 0.577350269189626, 0.577350269189626, 0.577350269189626, 0),
XYBeforeZ(GRADIENTS_3D_XY_BEFORE_Z, 0.3250575836718682, -0.3250575836718682, 0, 0.8880738339771154),
XZBeforeY(GRADIENTS_3D_XZ_BEFORE_Y, -0.3250575836718682, 0, 0.3250575836718682, 0.8880738339771154);
Grad3[] gradients;
double qx, qy, qz, qw;
private LatticeOrientation3D(Grad3[] gradients, double qx, double qy, double qz, double qw) {
this.gradients = gradients;
this.qx = qx; this.qy = qy; this.qz = qz; this.qw = qw;
}
}
/*
* Gradients
*/
public static class Grad2 {
double dx, dy;
public Grad2(double dx, double dy) {
this.dx = dx; this.dy = dy;
}
}
public static class Grad3 {
double dx, dy, dz;
public Grad3(double dx, double dy, double dz) {
this.dx = dx; this.dy = dy; this.dz = dz;
}
}
public static final double N2 = 0.01001634121365712;
public static final double N3 = 0.030485933181293584;
private static final Grad2[] GRADIENTS_2D, GRADIENTS_2D_X_BEFORE_Y;
private static final Grad3[] GRADIENTS_3D, GRADIENTS_3D_CLASSIC, GRADIENTS_3D_XY_BEFORE_Z, GRADIENTS_3D_XZ_BEFORE_Y;
static {
GRADIENTS_2D = new Grad2[PSIZE];
GRADIENTS_2D_X_BEFORE_Y = new Grad2[PSIZE];
Grad2[] grad2 = {
new Grad2( 0.130526192220052, 0.99144486137381),
new Grad2( 0.38268343236509, 0.923879532511287),
new Grad2( 0.608761429008721, 0.793353340291235),
new Grad2( 0.793353340291235, 0.608761429008721),
new Grad2( 0.923879532511287, 0.38268343236509),
new Grad2( 0.99144486137381, 0.130526192220051),
new Grad2( 0.99144486137381, -0.130526192220051),
new Grad2( 0.923879532511287, -0.38268343236509),
new Grad2( 0.793353340291235, -0.60876142900872),
new Grad2( 0.608761429008721, -0.793353340291235),
new Grad2( 0.38268343236509, -0.923879532511287),
new Grad2( 0.130526192220052, -0.99144486137381),
new Grad2(-0.130526192220052, -0.99144486137381),
new Grad2(-0.38268343236509, -0.923879532511287),
new Grad2(-0.608761429008721, -0.793353340291235),
new Grad2(-0.793353340291235, -0.608761429008721),
new Grad2(-0.923879532511287, -0.38268343236509),
new Grad2(-0.99144486137381, -0.130526192220052),
new Grad2(-0.99144486137381, 0.130526192220051),
new Grad2(-0.923879532511287, 0.38268343236509),
new Grad2(-0.793353340291235, 0.608761429008721),
new Grad2(-0.608761429008721, 0.793353340291235),
new Grad2(-0.38268343236509, 0.923879532511287),
new Grad2(-0.130526192220052, 0.99144486137381)
};
Grad2[] grad2XBeforeY = new Grad2[grad2.length];
for (int i = 0; i < grad2.length; i++) {
grad2[i].dx /= N2; grad2[i].dy /= N2;
// Unrotated gradients for XBeforeY 2D
double xx = grad2[i].dx * 0.7071067811865476;
double yy = grad2[i].dy * 0.7071067811865476;
grad2XBeforeY[i] = new Grad2(xx - yy, xx + yy);
}
for (int i = 0; i < PSIZE; i++) {
GRADIENTS_2D[i] = grad2[i % grad2.length];
GRADIENTS_2D_X_BEFORE_Y[i] = grad2XBeforeY[i % grad2XBeforeY.length];
}
GRADIENTS_3D = new Grad3[PSIZE];
GRADIENTS_3D_CLASSIC = new Grad3[PSIZE];
GRADIENTS_3D_XY_BEFORE_Z = new Grad3[PSIZE];
GRADIENTS_3D_XZ_BEFORE_Y = new Grad3[PSIZE];
Grad3[] grad3 = {
new Grad3(-2.22474487139, -2.22474487139, -1.0),
new Grad3(-2.22474487139, -2.22474487139, 1.0),
new Grad3(-3.0862664687972017, -1.1721513422464978, 0.0),
new Grad3(-1.1721513422464978, -3.0862664687972017, 0.0),
new Grad3(-2.22474487139, -1.0, -2.22474487139),
new Grad3(-2.22474487139, 1.0, -2.22474487139),
new Grad3(-1.1721513422464978, 0.0, -3.0862664687972017),
new Grad3(-3.0862664687972017, 0.0, -1.1721513422464978),
new Grad3(-2.22474487139, -1.0, 2.22474487139),
new Grad3(-2.22474487139, 1.0, 2.22474487139),
new Grad3(-3.0862664687972017, 0.0, 1.1721513422464978),
new Grad3(-1.1721513422464978, 0.0, 3.0862664687972017),
new Grad3(-2.22474487139, 2.22474487139, -1.0),
new Grad3(-2.22474487139, 2.22474487139, 1.0),
new Grad3(-1.1721513422464978, 3.0862664687972017, 0.0),
new Grad3(-3.0862664687972017, 1.1721513422464978, 0.0),
new Grad3(-1.0, -2.22474487139, -2.22474487139),
new Grad3( 1.0, -2.22474487139, -2.22474487139),
new Grad3( 0.0, -3.0862664687972017, -1.1721513422464978),
new Grad3( 0.0, -1.1721513422464978, -3.0862664687972017),
new Grad3(-1.0, -2.22474487139, 2.22474487139),
new Grad3( 1.0, -2.22474487139, 2.22474487139),
new Grad3( 0.0, -1.1721513422464978, 3.0862664687972017),
new Grad3( 0.0, -3.0862664687972017, 1.1721513422464978),
new Grad3(-1.0, 2.22474487139, -2.22474487139),
new Grad3( 1.0, 2.22474487139, -2.22474487139),
new Grad3( 0.0, 1.1721513422464978, -3.0862664687972017),
new Grad3( 0.0, 3.0862664687972017, -1.1721513422464978),
new Grad3(-1.0, 2.22474487139, 2.22474487139),
new Grad3( 1.0, 2.22474487139, 2.22474487139),
new Grad3( 0.0, 3.0862664687972017, 1.1721513422464978),
new Grad3( 0.0, 1.1721513422464978, 3.0862664687972017),
new Grad3( 2.22474487139, -2.22474487139, -1.0),
new Grad3( 2.22474487139, -2.22474487139, 1.0),
new Grad3( 1.1721513422464978, -3.0862664687972017, 0.0),
new Grad3( 3.0862664687972017, -1.1721513422464978, 0.0),
new Grad3( 2.22474487139, -1.0, -2.22474487139),
new Grad3( 2.22474487139, 1.0, -2.22474487139),
new Grad3( 3.0862664687972017, 0.0, -1.1721513422464978),
new Grad3( 1.1721513422464978, 0.0, -3.0862664687972017),
new Grad3( 2.22474487139, -1.0, 2.22474487139),
new Grad3( 2.22474487139, 1.0, 2.22474487139),
new Grad3( 1.1721513422464978, 0.0, 3.0862664687972017),
new Grad3( 3.0862664687972017, 0.0, 1.1721513422464978),
new Grad3( 2.22474487139, 2.22474487139, -1.0),
new Grad3( 2.22474487139, 2.22474487139, 1.0),
new Grad3( 3.0862664687972017, 1.1721513422464978, 0.0),
new Grad3( 1.1721513422464978, 3.0862664687972017, 0.0)
};
Grad3[] grad3Classic = new Grad3[grad3.length];
Grad3[] grad3XYBeforeZ = new Grad3[grad3.length];
Grad3[] grad3XZBeforeY = new Grad3[grad3.length];
for (int i = 0; i < grad3.length; i++) {
grad3[i].dx /= N3; grad3[i].dy /= N3; grad3[i].dz /= N3;
double gxr = grad3[i].dx, gyr = grad3[i].dy, gzr = grad3[i].dz;
// Unrotated gradients for classic 3D
double grr = (2.0 / 3.0) * (gxr + gyr + gzr);
double dx = grr - gxr, dy = grr - gyr, dz = grr - gzr;
grad3Classic[i] = new Grad3( grr - gxr, grr - gyr, grr - gzr );
// Unrotated gradients for XYBeforeZ 3D
double s2 = (gxr + gyr) * -0.211324865405187;
double zz = gzr * 0.577350269189626;
grad3XYBeforeZ[i] = new Grad3( gxr + s2 + zz, gyr + s2 + zz, (gzr - gxr - gyr) * 0.577350269189626 );
// Unrotated gradients for plane-first 3D
s2 = (gxr + gzr) * -0.211324865405187;
double yy = gyr * 0.577350269189626;
grad3XZBeforeY[i] = new Grad3( gxr + s2 + yy, (gyr - gxr - gzr) * 0.577350269189626, gzr + s2 + yy );
}
for (int i = 0; i < PSIZE; i++) {
GRADIENTS_3D[i] = grad3[i % grad3.length];
GRADIENTS_3D_CLASSIC[i] = grad3Classic[i % grad3Classic.length];
GRADIENTS_3D_XY_BEFORE_Z[i] = grad3XYBeforeZ[i % grad3XYBeforeZ.length];
GRADIENTS_3D_XZ_BEFORE_Y[i] = grad3XZBeforeY[i % grad3XZBeforeY.length];
}
}
}