-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathvtkFXAAFilterFS.glsl
777 lines (673 loc) · 30.3 KB
/
vtkFXAAFilterFS.glsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
//VTK::System::Dec
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
// Fragment shader for vtkOpenGLFXAAFilter.
//
// Based on the following implementation and description:
//
// Whitepaper:
// http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
//
// Sample implementation:
// https://github.com/NVIDIAGameWorks/GraphicsSamples/blob/master/samples/es3-kepler/FXAA/FXAA3_11.h
//VTK::Output::Dec
//======================== Debugging Options: ==================================
// Output a greyscale image showing the detected amount of subpixel aliasing.
//#define FXAA_DEBUG_SUBPIXEL_ALIASING
// Output vertical edges in red, and horizontal edges in blue.
//#define FXAA_DEBUG_EDGE_DIRECTION
// Output (number of steps taken) / (EndpointSearchIterations). Negative steps
// in the red channel, positive steps in the blue.
//#define FXAA_DEBUG_EDGE_NUM_STEPS
// Output degrees of red if the edge is near the negative edge endpoint, or
// shades of blue if near the positive edge endpoint. Pixels near an edge but
// not eligible for edgeAA (e.g. they are on the unaliased side of an edge)
// are shown in yellow.
//#define FXAA_DEBUG_EDGE_DISTANCE
// Output the length of the edge anti-aliasing offset vector in the red channel.
//#define FXAA_DEBUG_EDGE_SAMPLE_OFFSET
// Only apply a single form of anti-aliasing:
// 1 - Only apply sub-pixel anti-aliasing.
// 2 - Only apply edge anti-aliasing.
// Other / undefined - Apply both sub-pixel and edge anti-aliasing.
//#define FXAA_DEBUG_ONLY_SUBPIX_AA
//#define FXAA_DEBUG_ONLY_EDGE_AA
// Replacement stub for vtkShaderProgram::Substitute:
//VTK::DebugOptions::Def
//========================== Tuning Define: ====================================
// Which edge search implementation to use. If defined, use VTK's endpoint
// algorithm, otherwise use NVIDIA's.
//
// NVIDIA is faster, but gives poor results on single pixel lines (e.g.
// vtkPolyDataMapper's wireframe/edges). VTK is slower, but gives nicer results
// on single pixel lines.
//#define FXAA_USE_HIGH_QUALITY_ENDPOINTS;
// Replacement stub for vtkShaderProgram::Substitute:
//VTK::EndpointAlgo::Def
//========================= Input Parameters: ==================================
// Current fragment texture coordinate:
in vec2 texCoord;
// Aliased color buffer (should be sRGB, ideally)
uniform sampler2D Input;
// 1.f/Input.width, 1.f/Input.height:
uniform vec2 InvTexSize;
//======================== Tuning Parameters: ==================================
// See the vtkOpenGLFXAAFilter class documentation for details on these.
// Minimum change in luminosity (relative to maxLum) to use FXAA:
uniform float RelativeContrastThreshold;
// Absolute minimum lum change required for FXAA (overrides
// RelativeContrastThreshold value, not scaled):
uniform float HardContrastThreshold;
// Maximum amount of lowpass blending for subpixel anti-aliasing:
uniform float SubpixelBlendLimit;
// Ignore subpixel anti-aliasing that contributes less than this amount to the
// total contrast:
uniform float SubpixelContrastThreshold;
// Maximum number of steps to take when searching for line edges:
uniform int EndpointSearchIterations;
//============================ Helper Methods ==================================
// Converts rgb to luminosity:
const vec3 LUMINOSITY_VEC = vec3(0.299, 0.587, 0.114);
float luminosity(vec3 rgb)
{
return dot(rgb, LUMINOSITY_VEC);
}
//======================= Endpoint Search Routines =============================
// Identify the endpoints of a detected edge and compute a sampling offset to
// correct for aliasing. The computed offset accounts for distance from edge
// to create a gradient of antialiased values.
//
// Input parameters:
// - posC: The texture coordinate position of the current pixel.
// - lumC: The luminosity of the current pixel.
// - lumHC: The luminosity of the highest contrast pixel to HC that is
// perpendicular to the detected edge.
// - lengthSign: Single component magnitude and direction (in texture
// coordinates) from the center of C pointing to HC.
// - tcPixel: (Width, Height) of a single pixel in texture coordinate units.
// - horzSpan: True if the detected edge is horizontal.
// - posEdgeAA: Output parameter with the position to resample the input texture
// to get an edge anti-aliased rgb value for the current pixel.
//
// Implementations:
// - nvidiaEndpointSearch: The algorithm proposed by nVidia in their whitepaper
// and sample implementations. Faster, but poorly handles single-pixel lines.
// - vtkEndpointSearch: Modified endpoint search that does more texture lookups,
// but does better detection of single pixel line endpoints.
//
// Return values for endpoint searches:
const int FXAA_NO_EDGE_AA = 0; // Edge AA not required.
const int FXAA_NEED_EDGE_AA = 1; // Edge AA required.
const int FXAA_ABORT_EDGE_AA = 2; // Instruct to return. Used for debugging.
//================ nVidia's Endpoint Search Implementation =====================
int nvidiaEndpointSearch(vec2 posC, float lumC, float lumHC, float lengthSign,
vec2 tcPixel, bool horzSpan, out vec2 posEdgeAA)
{
/*****************************************************************************
* End of Edge Search *
*===========================================================================*
* Search along the direction of the detected edge to find both endpoints. *
* *
* We define HC as the Highest Contrast neighbor perpendicular to the edge *
* direction (i.e. the pixel on the other side of the edge). *
* *
* The luminosity of HC is lumHC, the contrast between C and HC is *
* contrastCHC, and the average luminosity of HC and C is lumAveCHC. *
* *
* We'll walk along the edge boundary in both direction, sampling the average*
* luminosity of the pixels on both sides of the edge: lumAveN for the *
* negative direction, lumAveP for the positive direction. We determine the *
* end of the edge to be where: *
* *
* abs(lumAve[NP] - lumCHC) >= contrastHC / 4. *
* *
* which indicates that the average luminosities have diverged enough to no *
* longer be considered part of the edge. *
****************************************************************************/
float contrastCHC = abs(lumC - lumHC);
// Point on the boundary of C and HC:
vec2 boundaryCHC = posC; // Will be shifted later.
// Direction of the edge
vec2 edgeDir = vec2(0.f); // Component is set below:
if (horzSpan)
{
boundaryCHC.y += lengthSign * 0.5f;
edgeDir.x = tcPixel.x;
}
else
{
boundaryCHC.x += lengthSign * 0.5f;
edgeDir.y = tcPixel.y;
}
// Prepare for the search loop:
float contrastThreshold = contrastCHC / 4.f;
float lumAveCHC = 0.5f * (lumC + lumHC);
float lumAveN;
float lumAveP;
bool doneN = false;
bool doneP = false;
vec2 posN = boundaryCHC - edgeDir;
vec2 posP = boundaryCHC + edgeDir;
#ifdef FXAA_DEBUG_EDGE_NUM_STEPS
int stepsN = 0;
int stepsP = 0;
#endif // FXAA_DEBUG_EDGE_NUM_STEPS
for (int i = 0; i < EndpointSearchIterations; ++i)
{
#ifdef FXAA_DEBUG_EDGE_NUM_STEPS
if (!doneN) stepsN += 1;
if (!doneP) stepsP += 1;
#endif // FXAA_DEBUG_EDGE_NUM_STEPS
// Sample on the edge boundary in both directions:
if (!doneN) lumAveN = luminosity(texture2D(Input, posN).rgb);
if (!doneP) lumAveP = luminosity(texture2D(Input, posP).rgb);
// Edge endpoint is where the contrast changes significantly:
doneN = doneN || (abs(lumAveN - lumAveCHC) >= contrastThreshold);
doneP = doneP || (abs(lumAveP - lumAveCHC) >= contrastThreshold);
if (doneN && doneP) break;
// Step to next pixel:
if (!doneN) posN -= edgeDir;
if (!doneP) posP += edgeDir;
}
#ifdef FXAA_DEBUG_EDGE_NUM_STEPS
gl_FragData[0] = vec4(float(stepsN) / float(EndpointSearchIterations), 0.f,
float(stepsP) / float(EndpointSearchIterations), 1.f);
return FXAA_ABORT_EDGE_AA;
#endif // FXAA_DEBUG_EDGE_NUM_STEPS
/*****************************************************************************
* Edge Search Analysis *
*===========================================================================*
* We've located the ends of the edge at this point. Next we figure out how *
* to interpolate the edge. *
* *
* First we need to find out which end of the edge (N or P) is changing *
* contrast relative to boundaryCHC. This is best explained visually: *
* *
* +------------+ *
* |XX E | *
* |NXXXHXXP | *
* |N C PXXXX| *
* | X| *
* +------------+ *
* *
* In the above, an X represents a dark pixel, and a blank space is a light *
* pixel. C is the current pixel, and H is pixel HC. The negative endpoint N*
* of the edge is the midpoint between the first set of blank pixels to the *
* left of C and H, while the positive endpoint P is the first set of dark *
* pixels to the right. The pixels under the "N" are light, while the pixels*
* under "P" are dark. The "P" side of the edge is changing contrast *
* relative to C. We compute this condition as: *
* *
* bool lumCLessThanAve = lumC < lumAveCHC; *
* bool lumNLessThanAve = lumAveN < lumAveCHC; *
* bool lumPLessThanAve = lumAveP < lumAveCHC; *
* bool shadeIfNearN = lumCLessThanAve != lumNLessThanAve; *
* bool shadeIfNearP = lumCLessThanAve != lumPLessThanAve; *
* *
* If shadeIfNearN is true, N is changing contrast relative to C. The same *
* is true for P. Thus, the change in the average contrast of the *
* endpoint relative to lumAveHC must be opposite to the change in contrast *
* from C to lumAveHC. *
* *
* In addition to checking the change in contrast, we also identify which *
* endpoint is nearest to C. As the variable names suggest, we will only *
* apply edge anti-aliasing if we're nearest an endpoint that has the *
* desired contrast change. This prevents shading edge neighbors that do not*
* follow the direction of the line, such as point E in the diagram. *
* *
* bool CisNearN = (norm(posN - boundaryCHC) < norm(posP - boundaryCHC)); *
* *
* If both of the above conditions are met (the nearest endpoint has the *
* proper contrast change), then we compute the ratio of C's distance from *
* the desired endpoint to the total length of the edge. This ratio is the *
* fraction of a pixel that we shift C towards HC to resample C for *
* anti-aliasing. *
****************************************************************************/
// Check both endpoints for the contrast change condition:
bool lumCLessThanAve = lumC < lumAveCHC;
bool lumNLessThanAve = lumAveN < lumAveCHC;
bool lumPLessThanAve = lumAveP < lumAveCHC;
bool shadeIfNearN = lumCLessThanAve != lumNLessThanAve;
bool shadeIfNearP = lumCLessThanAve != lumPLessThanAve;
// Identify the closest point:
float dstN;
float dstP;
if (horzSpan)
{
dstN = boundaryCHC.x - posN.x;
dstP = posP.x - boundaryCHC.x;
}
else
{
dstN = boundaryCHC.y - posN.y;
dstP = posP.y - boundaryCHC.y;
}
bool nearestEndpointIsN = dstN < dstP;
float dst = min(dstN, dstP);
// Finally determine if we need shading:
bool needEdgeAA = nearestEndpointIsN ? shadeIfNearN : shadeIfNearP;
#ifdef FXAA_DEBUG_EDGE_DISTANCE
if (needEdgeAA)
{
float maxDistance = EndpointSearchIterations;
if (nearestEndpointIsN)
{
gl_FragData[0] = vec4(1.f - dstN / maxDistance, 0.f, 0.f, 1.f);
}
else
{
gl_FragData[0] = vec4(0.f, 0.f, 1.f - dstP / maxDistance, 1.f);
}
}
else
{
gl_FragData[0] = vec4(1.f, 1.f, 0.f, 1.f);
}
return FXAA_ABORT_EDGE_AA;
#endif // FXAA_DEBUG_EDGE_DISTANCE
// Compute the pixel offset:
float invNegSpanLength = -1.f / (dstN + dstP);
float pixelOffset = dst * invNegSpanLength + 0.5;
#ifdef FXAA_DEBUG_EDGE_SAMPLE_OFFSET
if (needEdgeAA)
{ // x2, since the max value is 0.5:
gl_FragData[0] = vec4(-2.f * dst * invNegSpanLength, 0.f, 0.f, 1.f);
return FXAA_ABORT_EDGE_AA;
}
#endif // FXAA_DEBUG_EDGE_SAMPLE_OFFSET
// Resample the edge anti-aliased value:
posEdgeAA = posC;
if (horzSpan)
{
posEdgeAA.y += pixelOffset * lengthSign;
}
else
{
posEdgeAA.x += pixelOffset * lengthSign;
}
return needEdgeAA ? 1 : 0;
}
//================== VTK's Endpoint Search Implementation ======================
int vtkEndpointSearch(vec2 posC, float lumC, float lumHC, float lengthSign,
vec2 tcPixel, bool horzSpan, out vec2 posEdgeAA)
{
/*****************************************************************************
* End of Edge Search *
*===========================================================================*
* Search along the direction of the detected edge to find both endpoints. *
* +------------+ *
* |X | nVidia's endpoint detector handles this case poorly. If C *
* | XXXXXX C | is the current pixel, it will detect N as the leftmost *
* | XXHXX| column of pixels, since it samples the average luminosity *
* | X| at the border of the rows containing C and HC. The actual *
* +------------+ endpoint is 3 pixels to the left from C, but the average *
* luminosity does not change at this point. *
* *
* We adapt the algorithm to sample both rows/columns containing C and HC on *
* the texel centers, rather than the interpolated border. We then detect *
* the edge endpoints when: *
* *
* abs(lumHCN - lumHC) > abs(lumHCN - lumC) || *
* abs(lumCN - lumC) > abs(lumCN - lumHC) *
* *
* where lumHCN is the luminosity of the sample in HC's row in the negative *
* direction, lumCN is the luminosity of the sample in C's row in the *
* negative direction, lumHC is the luminosity of HC, and lumC is the *
* luminosity of C. Thus, the endpoint is where a sampled luminosity in C's *
* row is closer to HC, or vice-versa. The positive endpoint is determined *
* similarly. *
* *
* After the endpoints has been determined, we decide whether or not the *
* current pixel needs resampling. This is similar to nVidia's algorithm. *
* We determine if the luminosity of the nearest endpoint's C sample is *
* closer to C or HC. If it's closer to HC, it gets shaded. The resampling *
* offset is computed identically to nVidia's algorithm. *
****************************************************************************/
// Point on the boundary of C and HC:
vec2 posHC = posC; // Will be shifted later.
// Direction of the edge
vec2 edgeDir = vec2(0.f); // Component is set below:
if (horzSpan)
{
posHC.y += lengthSign;
edgeDir.x = tcPixel.x;
}
else
{
posHC.x += lengthSign;
edgeDir.y = tcPixel.y;
}
// Prepare for the search loop:
float lumHCN;
float lumHCP;
float lumCN;
float lumCP;
bool doneN = false;
bool doneP = false;
vec2 posHCN = posHC - edgeDir;
vec2 posHCP = posHC + edgeDir;
vec2 posCN = posC - edgeDir;
vec2 posCP = posC + edgeDir;
#ifdef FXAA_DEBUG_EDGE_NUM_STEPS
int stepsN = 0;
int stepsP = 0;
#endif // FXAA_DEBUG_EDGE_NUM_STEPS
for (int i = 0; i < EndpointSearchIterations; ++i)
{
#ifdef FXAA_DEBUG_EDGE_NUM_STEPS
if (!doneN) stepsN += 1;
if (!doneP) stepsP += 1;
#endif // FXAA_DEBUG_EDGE_NUM_STEPS
// Sample the luminosities along the edge:
if (!doneN)
{
lumHCN = luminosity(texture2D(Input, posHCN).rgb);
lumCN = luminosity(texture2D(Input, posCN).rgb);
}
if (!doneP)
{
lumHCP = luminosity(texture2D(Input, posHCP).rgb);
lumCP = luminosity(texture2D(Input, posCP).rgb);
}
// Check contrast to detect endpoint:
doneN = doneN || abs(lumHCN - lumHC) > abs(lumHCN - lumC)
|| abs(lumCN - lumC) > abs(lumCN - lumHC);
doneP = doneP || abs(lumHCP - lumHC) > abs(lumHCP - lumC)
|| abs(lumCP - lumC) > abs(lumCP - lumHC);
if (doneN && doneP)
{
break;
}
// Take next step.
if (!doneN)
{
posHCN -= edgeDir;
posCN -= edgeDir;
}
if (!doneP)
{
posHCP += edgeDir;
posCP += edgeDir;
}
}
#ifdef FXAA_DEBUG_EDGE_NUM_STEPS
gl_FragData[0] = vec4(float(stepsN) / float(EndpointSearchIterations), 0.f,
float(stepsP) / float(EndpointSearchIterations), 1.f);
return FXAA_ABORT_EDGE_AA;
#endif // FXAA_DEBUG_EDGE_NUM_STEPS
// Identify the closest point:
float dstN;
float dstP;
if (horzSpan)
{
dstN = posC.x - posCN.x;
dstP = posCP.x - posC.x;
}
else
{
dstN = posC.y - posCN.y;
dstP = posCP.y - posC.y;
}
bool nearestEndpointIsN = dstN < dstP;
float dst = min(dstN, dstP);
float lumCNear = nearestEndpointIsN ? lumCN : lumCP;
// Resample if the nearest endpoint sample in C's row is closer in luminosity
// to HC than C.
bool needEdgeAA = abs(lumCNear - lumHC) < abs(lumCNear - lumC);
#ifdef FXAA_DEBUG_EDGE_DISTANCE
if (needEdgeAA)
{
float maxDistance = EndpointSearchIterations;
if (nearestEndpointIsN)
{
gl_FragData[0] = vec4(1.f - dstN / maxDistance, 0.f, 0.f, 1.f);
}
else
{
gl_FragData[0] = vec4(0.f, 0.f, 1.f - dstP / maxDistance, 1.f);
}
}
else
{
gl_FragData[0] = vec4(1.f, 1.f, 0.f, 1.f);
}
return FXAA_ABORT_EDGE_AA;
#endif // FXAA_DEBUG_EDGE_DISTANCE
// Compute the pixel offset:
float invNegSpanLength = -1.f / (dstN + dstP);
float pixelOffset = dst * invNegSpanLength + 0.5f;
#ifdef FXAA_DEBUG_EDGE_SAMPLE_OFFSET
if (needEdgeAA)
{ // x2, since the max value is 0.5:
gl_FragData[0] = vec4(-2.f * dst * invNegSpanLength, 0.f, 0.f, 1.f);
return FXAA_ABORT_EDGE_AA;
}
#endif // FXAA_DEBUG_EDGE_SAMPLE_OFFSET
// Resample the edge anti-aliased value:
posEdgeAA = posC;
if (horzSpan)
{
posEdgeAA.y += pixelOffset * lengthSign;
}
else
{
posEdgeAA.x += pixelOffset * lengthSign;
}
return needEdgeAA ? 1 : 0;
}
//=============================== FXAA Body ====================================
void main()
{
// Pixel step size in texture coordinate units:
vec2 tcPixel = InvTexSize;
/****************************************************************************
* Compute Local Contrast Range And Early Abort *
*==========================================================================*
* Determine the contrast range for the current pixel and its neighbors *
* to the North, South, West, and East. If the range is less than both of: *
* *
* a) RelativeContrastThreshold * lumMax *
* *
* and *
* *
* b) HardContrastThreshold *
* *
* then skip anti-aliasing for this pixel. *
****************************************************************************/
// First compute the texture coordinates:
vec2 tcC = texCoord;
vec2 tcN = texCoord + vec2( 0.f, -tcPixel.y);
vec2 tcS = texCoord + vec2( 0.f, tcPixel.y);
vec2 tcW = texCoord + vec2(-tcPixel.x, 0.f);
vec2 tcE = texCoord + vec2( tcPixel.x, 0.f);
// Extract the rgb values of these pixels:
vec4 centerSample = texture2D(Input, tcC);
vec3 rgbC = centerSample.rgb;
vec3 rgbN = texture2D(Input, tcN).rgb;
vec3 rgbS = texture2D(Input, tcS).rgb;
vec3 rgbW = texture2D(Input, tcW).rgb;
vec3 rgbE = texture2D(Input, tcE).rgb;
// Convert to luminosity:
float lumC = luminosity(rgbC);
float lumN = luminosity(rgbN);
float lumS = luminosity(rgbS);
float lumW = luminosity(rgbW);
float lumE = luminosity(rgbE);
// The min, max, and range of luminosity for CNSWE:
float lumMin = min(lumC, min(min(lumN, lumS), min(lumW, lumE)));
float lumMax = max(lumC, max(max(lumN, lumS), max(lumW, lumE)));
float lumRange = lumMax - lumMin;
float lumThresh = max(HardContrastThreshold,
RelativeContrastThreshold * lumMax);
// Don't apply FXAA unless there's a significant change in luminosity around
// the current pixel:
if (lumRange < lumThresh)
{
gl_FragData[0] = vec4(rgbC, centerSample.a); // original color
return;
}
/****************************************************************************
* Fetch texels for complete 3x3 neighborhood. *
****************************************************************************/
// Fetch additional texels for edge detection / subpixel antialiasing:
vec2 tcNE = texCoord + vec2( tcPixel.x, -tcPixel.y);
vec2 tcSE = texCoord + vec2( tcPixel.x, tcPixel.y);
vec2 tcNW = texCoord + vec2(-tcPixel.x, -tcPixel.y);
vec2 tcSW = texCoord + vec2(-tcPixel.x, tcPixel.y);
vec3 rgbNE = texture2D(Input, tcNE).rgb;
vec3 rgbSE = texture2D(Input, tcSE).rgb;
vec3 rgbNW = texture2D(Input, tcNW).rgb;
vec3 rgbSW = texture2D(Input, tcSW).rgb;
float lumNE = luminosity(rgbNE);
float lumSE = luminosity(rgbSE);
float lumNW = luminosity(rgbNW);
float lumSW = luminosity(rgbSW);
// Precompute some combined luminosities. These are reused later.
float lumNS = lumN + lumS;
float lumWE = lumW + lumE;
float lumNSWE = lumNS + lumWE;
float lumNWNE = lumNW + lumNE;
float lumSWSE = lumSW + lumSE;
float lumNWSW = lumNW + lumSW;
float lumNESE = lumNE + lumSE;
/****************************************************************************
* Subpixel Anti-aliasing *
*==========================================================================*
* Check if the current pixel is very high contrast to it's neighbors (e.g. *
* specular aliasing, noisy shadow textures, etc). If it is, compute the *
* average color over the 3x3 neighborhood and a blending factor. *
* *
* The blending factor is computed as the minimum of: *
* *
* 1) max(0.f, abs([average NSWE lum] - lumC) - SubpixelContrastThreshold) *
* FXAA_SUBPIX_TRIM_SCALE *
* *
* or *
* *
* 2) SubpixelBlendLimit *
****************************************************************************/
// Check for sub-pixel aliasing (e.g. current pixel has high contrast from
// neighbors):
float lumAveNSWE = 0.25f * (lumNSWE);
float lumSubRange = abs(lumAveNSWE - lumC);
// Compute the subpixel blend amount:
float blendSub = max(0.f, (lumSubRange / lumRange) -
SubpixelContrastThreshold);
blendSub = min(SubpixelBlendLimit,
blendSub * (1.f / (1.f - SubpixelContrastThreshold)));
#ifdef FXAA_DEBUG_SUBPIXEL_ALIASING
if (blendSub > 0.f)
{
gl_FragData[0] = vec4(vec3(blendSub / SubpixelBlendLimit), 1.f);
}
else
{
gl_FragData[0] = vec4(rgbC, 1.f);
}
return;
#endif // FXAA_DEBUG_SUBPIXEL_ALIASING
// Compute the subpixel blend color. Average the 3x3 neighborhood:
vec3 rgbSub = (1.f/9.f) *
(rgbNW + rgbN + rgbNE +
rgbW + rgbC + rgbE +
rgbSW + rgbS + rgbSE);
/****************************************************************************
* Edge Testing *
*==========================================================================*
* Apply vertical and horizontal edge detection techniques to determine the *
* direction of any edges in the 3x3 neighborhood. *
****************************************************************************/
// Check for vertical edge. Pixel coeffecients are:
// 1 -2 1
// 2 -4 2
// 1 -2 1
// The absolute value of each row is taken, summed, and divided by 12.
// Operations are decomposed here to take advantage of FMA ops.
float edgeVertRow1 = abs(-2.f * lumN + lumNWNE);
float edgeVertRow2 = abs(-2.f * lumC + lumWE);
float edgeVertRow3 = abs(-2.f * lumS + lumSWSE);
float edgeVert = ((2.f * edgeVertRow2 + edgeVertRow1) + edgeVertRow3) / 12.f;
// Check for horizontal edge. Pixel coeffecients are:
// 1 2 1
// -2 -4 -2
// 1 2 1
// The absolute value of each column is taken, summed, and divided by 12.
// Operations are decomposed here to take advantage of FMA ops.
float edgeHorzCol1 = abs(-2.f * lumW + lumNWSW);
float edgeHorzCol2 = abs(-2.f * lumC + lumNS);
float edgeHorzCol3 = abs(-2.f * lumE + lumNESE);
float edgeHorz = ((2.f * edgeHorzCol2 + edgeHorzCol1) + edgeHorzCol3) / 12.f;
// Indicates that the edge span is horizontal:
bool horzSpan = edgeHorz >= edgeVert;
#ifdef FXAA_DEBUG_EDGE_DIRECTION
gl_FragData[0] = horzSpan ? vec4(0.f, 0.f, 1.f, 1.f)
: vec4(1.f, 0.f, 0.f, 1.f);
return;
#endif // FXAA_DEBUG_EDGE_DIRECTION
/****************************************************************************
* Endpoint Search Preparation *
*==========================================================================*
* Compute inputs for an endpoint detection algorithm. Mainly concerned *
* locating HC -- the Highest Contrast pixel (relative to C) that's on the *
* opposite side of the detected edge from C. *
****************************************************************************/
// The two neighbor pixels perpendicular to the edge:
float lumHC1;
float lumHC2;
// Single-pixel texture coordinate offset that points from C to HC.
float lengthSign;
if (horzSpan)
{
lumHC1 = lumN;
lumHC2 = lumS;
lengthSign = -tcPixel.y; // Assume N for now.
}
else
{
lumHC1 = lumW;
lumHC2 = lumE;
lengthSign = -tcPixel.x; // Assume W for now.
}
// Luminosity of the NSWE pixel perpendicular to the edge with the highest
// contrast to C:
float lumHC;
if (abs(lumC - lumHC1) >= abs(lumC - lumHC2))
{
lumHC = lumHC1;
}
else
{
lumHC = lumHC2;
// Also reverse the offset direction in this case:
lengthSign = -lengthSign;
}
vec2 posEdgeAA; // Position to resample C at to get edge-antialiasing.
#ifdef FXAA_USE_HIGH_QUALITY_ENDPOINTS
int endpointResult = vtkEndpointSearch(tcC, lumC, lumHC, lengthSign,
tcPixel, horzSpan, posEdgeAA);
#else // FXAA_USE_HIGH_QUALITY_ENDPOINTS
int endpointResult = nvidiaEndpointSearch(tcC, lumC, lumHC, lengthSign,
tcPixel, horzSpan, posEdgeAA);
#endif // FXAA_USE_HIGH_QUALITY_ENDPOINTS
// Only sample texture if needed. Reuse rgbC otherwise.
vec3 rgbEdgeAA = rgbC;
switch (endpointResult)
{
case FXAA_ABORT_EDGE_AA: // Used for debugging (endpoint search set colors)
return;
case FXAA_NEED_EDGE_AA: // Resample the texture at the requested position.
rgbEdgeAA = texture2D(Input, posEdgeAA).rgb;
break;
case FXAA_NO_EDGE_AA: // Current pixel does not need edge anti-aliasing.
default:
break;
}
#ifdef FXAA_DEBUG_ONLY_SUBPIX_AA
rgbEdgeAA = rgbC;
#endif // FXAA_DEBUG_ONLY_SUBPIX_AA
#ifdef FXAA_DEBUG_ONLY_EDGE_AA
blendSub = 0.f;
#endif // FXAA_DEBUG_ONLY_EDGE_AA
// Blend the edgeAA and subpixelAA results together:
gl_FragData[0] = vec4(mix(rgbEdgeAA, rgbSub, blendSub), centerSample.a);
}