forked from JayDDee/cpuminer-opt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimd-utils.h
213 lines (192 loc) · 7.39 KB
/
simd-utils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#if !defined(SIMD_UTILS_H__)
#define SIMD_UTILS_H__ 1
//////////////////////////////////////////////////////////////////////
//
// SIMD utilities
//
// Not to be confused with the hashing function of the same name. This
// is about Single Instruction Multiple Data programming using CPU
// features such as SSE and AVX.
//
// This header is the entry point to a suite of macros and functions
// to perform basic operations on vectors that are useful in crypto
// mining. Some of these functions have native CPU support for scalar
// data but not for vectors. The main categories are bit rotation
// and endian byte swapping
//
// This suite supports some operations on regular 64 bit integers
// as well as 128 bit integers available on recent versions of Linux
// and GCC.
//
// It also supports various vector sizes on CPUs that meet the minimum
// requirements.
//
// The minimum for any real work is a 64 bit CPU with SSE2,
// ie an the Intel Core 2.
//
// Following are the minimum requirements for each vector size. There
// is no significant 64 bit vectorization therefore SSE2 is the practical
// minimum for using this code.
//
// MMX: 64 bit vectors (Not used in cpuminer-opt)
// SSE2: 128 bit vectors (64 bit CPUs only, such as Intel Core2.
// AVX2: 256 bit vectors (Starting with Intel Haswell and AMD Ryzen)
// AVX512: 512 bit vectors (Starting with SkylakeX)
// AVX10: when available will supersede AVX512 and will bring AVX512
// features, except 512 bit vectors, to Intel's Ecores. It needs to be
// enabled manually when the relevant GCC macros are known.
//
// Most functions are avalaible at the stated levels but in rare cases
// a higher level feature may be required with no compatible alternative.
// Some SSE2 functions have versions optimized for higher feature levels
// such as SSSE3 or SSE4.1 that will be used automatically on capable
// CPUs.
//
// Strict alignment of data is required: 16 bytes for 128 bit vectors,
// 32 bytes for 256 bit vectors and 64 bytes for 512 bit vectors. 64 byte
// alignment is recommended in all cases for best cache alignment.
//
// All functions are defined with type agnostic pointers (void*) arguments
// and are cast or aliased as the appropriate type. This adds convenience
// for the applications but also adds responsibility to ensure adequate data
// alignment.
//
// An attempt was made to make the names as similar as possible to
// Intel's intrinsic function format. Most variations are to avoid
// confusion with actual Intel intrinsics, brevity, and clarity.
//
// The main differences are:
//
// - the leading underscore "_" is dropped from the prefix of vector function
// macros.
// - "mm128" is used 128 bit prefix to be consistent with mm256 & mm512 and
// to avoid the ambiguity of "mm" which is also used for 64 bit MMX
// intrinsics.
// - the element size does not include additional type specifiers
// like "epi".
// - there is a subset of some functions for scalar data. They may have
// no prefix nor vec-size, just one size, the size of the data.
// - Some integer functions are also defined which use a similar notation.
//
// Function names follow this pattern:
//
// [prefix]_[op][vsize]_[esize]
//
// Prefix: usually the size of the returned vector.
// Following are some examples:
//
// u64: unsigned 64 bit integer function
// i128: signed 128 bit integer function (rarely used)
// m128: 128 bit vector identifier (deprecated)
// mm128: 128 bit vector function
//
// op: describes the operation of the function or names the data
// identifier.
//
// esize: optional, element size of operation
//
// vsize: optional, lane size used when a function operates on elements
// within lanes of a larger vector.
//
// Ex: mm256_shuflr128_32 rotates each 128 bit lane of a 256 bit vector
// right by 32 bits.
//
// New architecture agnostic syntax to support multiple architectures.
// currently only used for 128 bit vectors.
//
// [prefix]_[op]esize]
//
// Abbreviated when no vsize, space is removed between op & esize.
//
// Ex: v128_add32 gets remapped to the appropriate architecture intrinsic.
//
// New type specification includes element size because it's significant on
// AArch64. For x86_64 they'r all maped to v128_t. On arm the default is
// v128u32_t.
//
// v128_t, v1q28u64_t, v128u32_t.
//
// [prefix] is changed to "v128" or size specific for typedef.
//
// Vector constants
//
// Vector constants are a big problem because they technically don't exist.
// All vectors used as constants either reside in memory or must be genererated
// at run time at significant cost. The cost of generating a constant
// increases non-linearly with the number of vector elements. A 4 element
// vector costs between 7 and 11 clocks to generate, an 8 element vector
// is 15-25 clocks. There are also additional clock due to data dependency
// stalls.
//
// Vector constants are often used as control indexes for permute, blend, etc,
// where generating the index can be over 90% of the operation. This is
// where the problem occurs. An instruction that only requires one to 3
// clocks needs may times more just to build the index argument.
//
// There is very little a programmer can do to avoid the worst case scenarios.
// Smaller integers can be merged to form 64 bit integers, and vectors with
// repeated elements can be generated more efficiently but they have limited
// benefit and limited application.
//
// If a vector constant is to be used repeatedly it is better to define a local
// variable to generate the constant only once.
//
//////////////////////////////////////////////////////////////////////////
#include <inttypes.h>
#include <memory.h>
#include <stdlib.h>
#include <stdbool.h>
#include <stdint.h>
#include <stddef.h>
// SIMD512: Use 512, 256 & 128 bit vectors, excludes AVX512VBMI
// VL256: Include AVX512VL instructions on 256 & 128 bit vectors
// VBMI: Include AVX512VBMI instructions on all vectors.
// AVX10 can exist without support for 512 bit vectors.
#if defined(__AVX10_1_512__)
#define SIMD512 1
#elif !defined(__AVX10_1__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define SIMD512 1
#endif
// AVX512VL instructions applied to 256 & 128 bit vectors is supported with
// either AVX512VL or any version of AVX10.
#if defined(__AVX10_1__)
#define VL256 1
#elif defined(__AVX512VL__)
#define VL256 1
#endif
// VBMI does not exist on early versions of AVX512
#if defined(__AVX10_1__) || defined(__AVX512VBMI__)
#define VBMI 1
#endif
/*
#if defined(SIMD512)
#warning "SIMD512"
#endif
#if defined(VBMI)
#warning "VBMI"
#endif
#if defined(VL256)
#warning "VL256"
#endif
*/
#if defined(__x86_64__)
#include <x86intrin.h>
#elif defined(__aarch64__)
#include <arm_neon.h>
#endif
#include "simd-utils/simd-int.h"
// x86_64 MMX 64 bit vectors
#include "simd-utils/simd-64.h"
// x86_64 SSE2 128 bit vectors
#include "simd-utils/simd-128.h"
// x86_64 AVX2 256 bit vectors
#include "simd-utils/simd-256.h"
// x86_64 AVX512 512 bit vectors
#include "simd-utils/simd-512.h"
// move up after cleaning
// CPU architectire abstraction
//#include "simd-utils/simd-portable.h"
// aarch64 neon 128 bit vectors
#include "simd-utils/simd-neon.h"
#include "simd-utils/intrlv.h"
#endif // SIMD_UTILS_H__