-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patherpnet_train.py
149 lines (113 loc) · 4.44 KB
/
erpnet_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
from torch.autograd import Variable
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
import torch.optim as optim
import glob
from data_loader import RescaleT
from data_loader import ToTensorLab
from data_loader import SalObjDataset
from model import ERPNet
# ------- 1. define loss function --------
bce_loss = nn.BCELoss(reduction='mean')
def muti_label_loss(l0,l1,l2,l3,l4,l5,labels_v):
loss0 = bce_loss(l0,labels_v)
loss1 = bce_loss(l1,labels_v)
loss2 = bce_loss(l2,labels_v)
loss3 = bce_loss(l3,labels_v)
loss4 = bce_loss(l4,labels_v)
loss5 = bce_loss(l5,labels_v)
loss_label = loss0 + loss1 + loss2 + loss3 + loss4 + loss5
return loss_label
def muti_edge_loss(e1,e2,e3,e4,e5,edges_v):
loss1 = bce_loss(e1,edges_v)
loss2 = bce_loss(e2,edges_v)
loss3 = bce_loss(e3,edges_v)
loss4 = bce_loss(e4,edges_v)
loss5 = bce_loss(e5,edges_v)
loss_edge = loss1 + loss2 + loss3 + loss4 + loss5
return loss_edge
# ------- 2. set the directory of training dataset --------
tra_image_dir = ""
tra_label_dir = ""
tra_edge_dir= ""
image_ext = '.jpg'
label_ext = '.png'
edge_ext = '.png'
model_dir = ""
epoch_num = 91
batch_size_train = 6
train_num = 0
tra_img_name_list = glob.glob(tra_image_dir + '*' + image_ext)
tra_lbl_name_list = []
tra_edge_name_list = []
for img_path in tra_img_name_list:
img_name = img_path.split("/")[-1]
aaa = img_name.split(".")
bbb = aaa[0:-1]
imidx = bbb[0]
for i in range(1,len(bbb)):
imidx = imidx + "." + bbb[i]
tra_lbl_name_list.append(tra_label_dir + imidx + label_ext)
tra_edge_name_list.append(tra_edge_dir + imidx + edge_ext)
print("---")
print("train images: ", len(tra_img_name_list))
print("train labels: ", len(tra_lbl_name_list))
print("train edges: ",len(tra_edge_name_list))
print("---")
train_num = len(tra_img_name_list)
salobj_dataset = SalObjDataset(
img_name_list=tra_img_name_list,
lbl_name_list=tra_lbl_name_list,
edge_name_list=tra_edge_name_list,
transform=transforms.Compose([
RescaleT(224),
ToTensorLab(flag=0)]))
salobj_dataloader = DataLoader(salobj_dataset, batch_size=batch_size_train, shuffle=True, num_workers=1)
# ------- 3. define model --------
# define the net
net = ERPNet()
if torch.cuda.is_available():
net.cuda()
# ------- 4. define optimizer --------
print("---define optimizer...")
optimizer = optim.Adam(net.parameters(), lr=1e-4, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
# ------- 6. training process --------
def main():
print("---start training...")
ite_num = 0
for epoch in range(0, epoch_num):
net.train()
for i, data in enumerate(salobj_dataloader):
ite_num = ite_num + 1
inputs, labels, edges = data['image'], data['label'], data['edge']
inputs = inputs.type(torch.FloatTensor)
labels = labels.type(torch.FloatTensor)
edges = edges.type(torch.FloatTensor)
# wrap them in Variable
if torch.cuda.is_available():
inputs_v, labels_v = Variable(inputs.cuda(), requires_grad=False), Variable(labels.cuda(),requires_grad=False)
edges_v = Variable(edges.cuda(), requires_grad=False)
else:
inputs_v, labels_v = Variable(inputs, requires_grad=False), Variable(labels, requires_grad=False)
edges_v = Variable(edges, requires_grad=False)
# y zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
l0,l1,l2,l3,l4,l5,e1,e2,e3,e4,e5 = net(inputs_v)
loss_label = muti_label_loss(l0,l1,l2,l3,l4,l5,labels_v)
loss_edge = muti_edge_loss(e1,e2,e3,e4,e5,edges_v)
loss = loss_label + loss_edge
loss.backward()
optimizer.step()
# del temporary outputs and loss
print("[epoch: %3d/%3d, batch: %5d/%5d, ite: %d] train loss: %.3f" % (
epoch + 1, epoch_num, (i + 1) * batch_size_train, train_num, ite_num, loss.item()))
if ite_num % 2000 == 0: # save model every 2000 iterations
torch.save(net.state_dict(), model_dir + "MYNet_%d_%d.pth" % (ite_num, epoch))
net.train() # resume train
del l0,l1,l2,l3,l4,l5,e1,e2,e3,e4,e5,loss_label,loss_edge,loss
print('-------------Congratulations! Training Done!!!-------------')
if __name__ == '__main__':
main()