-
Notifications
You must be signed in to change notification settings - Fork 369
/
Copy pathdata_load.py
132 lines (108 loc) · 4.75 KB
/
data_load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# -*- coding: utf-8 -*-
#/usr/bin/python2
'''
By kyubyong park. [email protected].
https://www.github.com/kyubyong/dc_tts
'''
from __future__ import print_function
from hyperparams import Hyperparams as hp
import numpy as np
import tensorflow as tf
from utils import *
import codecs
import re
import os
import unicodedata
def load_vocab():
char2idx = {char: idx for idx, char in enumerate(hp.vocab)}
idx2char = {idx: char for idx, char in enumerate(hp.vocab)}
return char2idx, idx2char
def text_normalize(text):
text = ''.join(char for char in unicodedata.normalize('NFD', text)
if unicodedata.category(char) != 'Mn') # Strip accents
text = text.lower()
text = re.sub("[^{}]".format(hp.vocab), " ", text)
text = re.sub("[ ]+", " ", text)
return text
def load_data(mode="train"):
'''Loads data
Args:
mode: "train" or "synthesize".
'''
# Load vocabulary
char2idx, idx2char = load_vocab()
if mode=="train":
if "LJ" in hp.data:
# Parse
fpaths, text_lengths, texts = [], [], []
transcript = os.path.join(hp.data, 'transcript.csv')
lines = codecs.open(transcript, 'r', 'utf-8').readlines()
for line in lines:
fname, _, text = line.strip().split("|")
fpath = os.path.join(hp.data, "wavs", fname + ".wav")
fpaths.append(fpath)
text = text_normalize(text) + "E" # E: EOS
text = [char2idx[char] for char in text]
text_lengths.append(len(text))
texts.append(np.array(text, np.int32).tostring())
return fpaths, text_lengths, texts
else: # nick or kate
# Parse
fpaths, text_lengths, texts = [], [], []
transcript = os.path.join(hp.data, 'transcript.csv')
lines = codecs.open(transcript, 'r', 'utf-8').readlines()
for line in lines:
fname, _, text, is_inside_quotes, duration = line.strip().split("|")
duration = float(duration)
if duration > 10. : continue
fpath = os.path.join(hp.data, fname)
fpaths.append(fpath)
text += "E" # E: EOS
text = [char2idx[char] for char in text]
text_lengths.append(len(text))
texts.append(np.array(text, np.int32).tostring())
return fpaths, text_lengths, texts
else: # synthesize on unseen test text.
# Parse
lines = codecs.open(hp.test_data, 'r', 'utf-8').readlines()[1:]
sents = [text_normalize(line.split(" ", 1)[-1]).strip() + "E" for line in lines] # text normalization, E: EOS
texts = np.zeros((len(sents), hp.max_N), np.int32)
for i, sent in enumerate(sents):
texts[i, :len(sent)] = [char2idx[char] for char in sent]
return texts
def get_batch():
"""Loads training data and put them in queues"""
with tf.device('/cpu:0'):
# Load data
fpaths, text_lengths, texts = load_data() # list
maxlen, minlen = max(text_lengths), min(text_lengths)
# Calc total batch count
num_batch = len(fpaths) // hp.B
# Create Queues
fpath, text_length, text = tf.train.slice_input_producer([fpaths, text_lengths, texts], shuffle=True)
# Parse
text = tf.decode_raw(text, tf.int32) # (None,)
if hp.prepro:
def _load_spectrograms(fpath):
fname = os.path.basename(fpath)
mel = "mels/{}".format(fname.replace("wav", "npy"))
mag = "mags/{}".format(fname.replace("wav", "npy"))
return fname, np.load(mel), np.load(mag)
fname, mel, mag = tf.py_func(_load_spectrograms, [fpath], [tf.string, tf.float32, tf.float32])
else:
fname, mel, mag = tf.py_func(load_spectrograms, [fpath], [tf.string, tf.float32, tf.float32]) # (None, n_mels)
# Add shape information
fname.set_shape(())
text.set_shape((None,))
mel.set_shape((None, hp.n_mels))
mag.set_shape((None, hp.n_fft//2+1))
# Batching
_, (texts, mels, mags, fnames) = tf.contrib.training.bucket_by_sequence_length(
input_length=text_length,
tensors=[text, mel, mag, fname],
batch_size=hp.B,
bucket_boundaries=[i for i in range(minlen + 1, maxlen - 1, 20)],
num_threads=8,
capacity=hp.B*4,
dynamic_pad=True)
return texts, mels, mags, fnames, num_batch