-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLowerbounds.nb
889 lines (859 loc) · 35.8 KB
/
Lowerbounds.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 36475, 881]
NotebookOptionsPosition[ 34226, 837]
NotebookOutlinePosition[ 34620, 853]
CellTagsIndexPosition[ 34577, 850]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Lower bounds", "Title",
CellChangeTimes->{{3.8420703610634336`*^9,
3.842070365004519*^9}},ExpressionUUID->"0b21bd69-ca26-4f5b-b79e-\
d14c06890092"],
Cell[BoxData["Quit"], "Input",
CellChangeTimes->{{3.8419761856180964`*^9, 3.841976186130603*^9}},
CellLabel->"In[42]:=",ExpressionUUID->"d37797a8-0712-4fae-aa59-d5a8173afe92"],
Cell["\<\
Define the problem and functions for computing associated properties:\
\>", "Text",
CellChangeTimes->{{3.841981583886159*^9,
3.841981603918765*^9}},ExpressionUUID->"06beab3b-4460-4475-bb21-\
f5fbab34ca68"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"getW", "[", "L_", "]"}], ":=",
RowBox[{"Evaluate", "@",
RowBox[{"{",
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"L", "[",
RowBox[{"x", ",", "y"}], "]"}], ",", "x"}], "]"}], ",",
RowBox[{"-",
RowBox[{"D", "[",
RowBox[{
RowBox[{"L", "[",
RowBox[{"x", ",", "y"}], "]"}], ",", "y"}], "]"}]}]}], "}"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"F", "[",
RowBox[{"x_", ",", "y_"}], "]"}], ":=",
RowBox[{
RowBox[{"a", "*", "x", "*", "y"}], "+",
RowBox[{
RowBox[{"b", "/", "2"}], "*",
RowBox[{"x", "^", "2"}]}], "-",
RowBox[{
RowBox[{"b", "/", "2"}], "*",
RowBox[{"y", "^", "2"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"W", "[",
RowBox[{"x_", ",", "y_"}], "]"}], ":=",
RowBox[{"Evaluate", "@",
RowBox[{"getW", "[", "F", "]"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"star", "=",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"weakMVIcondition", "[",
RowBox[{"x_", ",", "y_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"W", "[",
RowBox[{"x", ",", "y"}], "]"}], ")"}], ".",
RowBox[{"(",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y"}], "}"}], "-", "star"}], ")"}]}], "/",
RowBox[{
RowBox[{"Norm", "[",
RowBox[{"W", "[",
RowBox[{"x", ",", "y"}], "]"}], "]"}], "^", "2"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"J", "[",
RowBox[{"x_", ",", "y_"}], "]"}], ":=",
RowBox[{"Evaluate", "@",
RowBox[{"(",
RowBox[{"D", "[",
RowBox[{
RowBox[{"W", "[",
RowBox[{"x", ",", "y"}], "]"}], ",",
RowBox[{"{",
RowBox[{"{",
RowBox[{"x", ",", "y"}], "}"}], "}"}]}], "]"}], ")"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"LocalLips", "[",
RowBox[{"x_", ",", "y_"}], "]"}], ":=",
RowBox[{
RowBox[{"SingularValueList", "[",
RowBox[{
RowBox[{"J", "[",
RowBox[{"x", ",", "y"}], "]"}], ",", "1"}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.841976199174181*^9, 3.841976208426649*^9}, {
3.841976563194046*^9, 3.841976692956122*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"3e197fc1-bca3-4cac-bd73-c3e209dd26d3"],
Cell["Compute L and \[Rho] and the EG+ update:", "Text",
CellChangeTimes->{{3.841981618947003*^9,
3.841981641171012*^9}},ExpressionUUID->"20532a89-c2a6-4b92-b625-\
23438372a206"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"Clear", "[",
RowBox[{"a", ",", "b", ",", "c", ",", "\[Alpha]"}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"$Assumptions", "=",
RowBox[{
RowBox[{"a", "\[Element]", "PositiveReals"}], "&&",
RowBox[{"b", "\[Element]", "NegativeReals"}], "&&",
RowBox[{"x", "\[Element]", "Reals"}], "&&",
RowBox[{"y", "\[Element]", "Reals"}], "&&",
RowBox[{"\[Alpha]", "\[Element]", "PositiveReals"}], "&&",
RowBox[{"\[Alpha]", "<", "1"}], "&&",
RowBox[{"c", "\[Element]", "PositiveReals"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"\[Rho]", "=",
RowBox[{
RowBox[{"weakMVIcondition", "[",
RowBox[{"x", ",", "y"}], "]"}], "//",
"Simplify"}]}], "\[IndentingNewLine]",
RowBox[{"L", "=",
RowBox[{
RowBox[{"LocalLips", "[",
RowBox[{"x", ",", "y"}], "]"}], "//",
"Simplify"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Gamma]", "=",
RowBox[{"1", "/", "L"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"EG", "[",
RowBox[{"x_", ",", "y_"}], "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{", "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"zbar", "=",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y"}], "}"}], "-",
RowBox[{"\[Gamma]", "*",
RowBox[{"W", "[",
RowBox[{"x", ",", "y"}], "]"}]}]}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y"}], "}"}], "-",
RowBox[{"\[Alpha]", "*", "\[Gamma]", "*",
RowBox[{"W", "[",
RowBox[{
RowBox[{"zbar", "[",
RowBox[{"[", "1", "]"}], "]"}], ",",
RowBox[{"zbar", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "]"}]}]}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"update", "=",
RowBox[{
RowBox[{"EG", "[",
RowBox[{"x", ",", "y"}], "]"}], "//", "Simplify"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"T", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{"update", ",", "x"}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}], ",",
RowBox[{
RowBox[{"D", "[",
RowBox[{"update", ",", "y"}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{"update", ",", "x"}], "]"}], "[",
RowBox[{"[", "2", "]"}], "]"}], ",",
RowBox[{
RowBox[{"D", "[",
RowBox[{"update", ",", "y"}], "]"}], "[",
RowBox[{"[", "2", "]"}], "]"}]}], "}"}]}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"T", "//", "MatrixForm"}]}], "Input",
CellChangeTimes->{{3.841976030011795*^9, 3.841976076258515*^9}, {
3.841976289521921*^9, 3.841976292573941*^9}, {3.841976464093432*^9,
3.841976479951844*^9}, {3.8419792824903708`*^9, 3.841979299078271*^9}, {
3.841979684509924*^9, 3.841979707292132*^9}, {3.841979777472658*^9,
3.841979779324789*^9}, {3.841979862354371*^9, 3.841979920251382*^9},
3.8419800753998623`*^9, {3.841980194627554*^9, 3.8419801961864853`*^9}, {
3.841981645954422*^9, 3.841981646287685*^9}, {3.841998797080327*^9,
3.841998800460949*^9}, 3.8419989050646276`*^9},
CellLabel->"In[8]:=",ExpressionUUID->"4a9deb15-9103-466b-8a5f-4c0f11dd7fed"],
Cell[BoxData[
FractionBox["b",
RowBox[{
SuperscriptBox["a", "2"], "+",
SuperscriptBox["b", "2"]}]]], "Output",
CellChangeTimes->{
3.841976230797536*^9, 3.841976292923914*^9, {3.841976471497649*^9,
3.841976480341612*^9}, 3.84197670064032*^9, {3.841979285007352*^9,
3.8419793008010273`*^9}, {3.8419796864315233`*^9, 3.841979707960002*^9},
3.841979779965454*^9, {3.841979862650362*^9, 3.841979921135029*^9},
3.8419800578549757`*^9, 3.841980090741764*^9, {3.8419801860924187`*^9,
3.841980196577271*^9}, 3.8419802536259747`*^9, 3.841981646751663*^9,
3.8419817045090847`*^9, {3.841998720158999*^9, 3.841998733786332*^9},
3.841998801197577*^9, 3.841998905472348*^9, 3.842430219427421*^9},
CellLabel->"Out[10]=",ExpressionUUID->"afb534d2-4458-4abc-a0bf-ce50931b1be8"],
Cell[BoxData[
SqrtBox[
RowBox[{
SuperscriptBox["a", "2"], "+",
SuperscriptBox["b", "2"]}]]], "Output",
CellChangeTimes->{
3.841976230797536*^9, 3.841976292923914*^9, {3.841976471497649*^9,
3.841976480341612*^9}, 3.84197670064032*^9, {3.841979285007352*^9,
3.8419793008010273`*^9}, {3.8419796864315233`*^9, 3.841979707960002*^9},
3.841979779965454*^9, {3.841979862650362*^9, 3.841979921135029*^9},
3.8419800578549757`*^9, 3.841980090741764*^9, {3.8419801860924187`*^9,
3.841980196577271*^9}, 3.8419802536259747`*^9, 3.841981646751663*^9,
3.8419817045090847`*^9, {3.841998720158999*^9, 3.841998733786332*^9},
3.841998801197577*^9, 3.841998905472348*^9, 3.8424302195118647`*^9},
CellLabel->"Out[11]=",ExpressionUUID->"84052630-3585-4aa0-8b8b-c3ede3a60c65"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
FractionBox[
RowBox[{
RowBox[{
SuperscriptBox["a", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-", "\[Alpha]"}], ")"}]}], "+",
RowBox[{"b", " ",
RowBox[{"(",
RowBox[{"b", "+",
RowBox[{"b", " ", "\[Alpha]"}], "-",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["a", "2"], "+",
SuperscriptBox["b", "2"]}]], " ", "\[Alpha]"}]}], ")"}]}]}],
RowBox[{
SuperscriptBox["a", "2"], "+",
SuperscriptBox["b", "2"]}]],
RowBox[{"-",
FractionBox[
RowBox[{"a", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "b"}], "+",
SqrtBox[
RowBox[{
SuperscriptBox["a", "2"], "+",
SuperscriptBox["b", "2"]}]]}], ")"}], " ", "\[Alpha]"}],
RowBox[{
SuperscriptBox["a", "2"], "+",
SuperscriptBox["b", "2"]}]]}]},
{
FractionBox[
RowBox[{"a", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "b"}], "+",
SqrtBox[
RowBox[{
SuperscriptBox["a", "2"], "+",
SuperscriptBox["b", "2"]}]]}], ")"}], " ", "\[Alpha]"}],
RowBox[{
SuperscriptBox["a", "2"], "+",
SuperscriptBox["b", "2"]}]],
FractionBox[
RowBox[{
RowBox[{
SuperscriptBox["a", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-", "\[Alpha]"}], ")"}]}], "+",
RowBox[{"b", " ",
RowBox[{"(",
RowBox[{"b", "+",
RowBox[{"b", " ", "\[Alpha]"}], "-",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["a", "2"], "+",
SuperscriptBox["b", "2"]}]], " ", "\[Alpha]"}]}], ")"}]}]}],
RowBox[{
SuperscriptBox["a", "2"], "+",
SuperscriptBox["b", "2"]}]]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{
3.841976230797536*^9, 3.841976292923914*^9, {3.841976471497649*^9,
3.841976480341612*^9}, 3.84197670064032*^9, {3.841979285007352*^9,
3.8419793008010273`*^9}, {3.8419796864315233`*^9, 3.841979707960002*^9},
3.841979779965454*^9, {3.841979862650362*^9, 3.841979921135029*^9},
3.8419800578549757`*^9, 3.841980090741764*^9, {3.8419801860924187`*^9,
3.841980196577271*^9}, 3.8419802536259747`*^9, 3.841981646751663*^9,
3.8419817045090847`*^9, {3.841998720158999*^9, 3.841998733786332*^9},
3.841998801197577*^9, 3.841998905472348*^9, 3.842430219573236*^9},
CellLabel->
"Out[16]//MatrixForm=",ExpressionUUID->"6443ce15-a050-4570-a49a-\
707fefafd8d6"]
}, Open ]],
Cell["\<\
Compute the spectral radius and solve given the constraint on \[Rho]:\
\>", "Text",
CellChangeTimes->{{3.841981653611495*^9,
3.8419816894481077`*^9}},ExpressionUUID->"f287c4cf-47de-4885-af92-\
ba39f06f7315"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"spectralrad", "=",
RowBox[{
RowBox[{"Max", "[",
RowBox[{"Abs", "[",
RowBox[{"Eigenvalues", "[", "T", "]"}], "]"}], "]"}], "//",
"FullSimplify"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Reduce", "[",
RowBox[{
RowBox[{
RowBox[{"\[Rho]", "==",
RowBox[{
RowBox[{"-", "c"}], "/", "L"}]}], "&&",
RowBox[{"spectralrad", "<", "1"}]}], ",",
RowBox[{"{",
RowBox[{"c", ",", "a", ",", "b"}], "}"}]}], "]"}], "//",
"FullSimplify"}]}], "Input",
CellChangeTimes->{
3.841981685819334*^9, {3.841998713992446*^9, 3.841998718257225*^9}, {
3.841998940245427*^9, 3.8419989530509768`*^9}},
CellLabel->"In[17]:=",ExpressionUUID->"9c16fcbf-38d3-4085-8180-0ea0bab8d932"],
Cell[BoxData[
SqrtBox[
FractionBox[
RowBox[{
SuperscriptBox["b", "2"], "-",
RowBox[{"2", " ", "b", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "b"}], "+",
SqrtBox[
RowBox[{
SuperscriptBox["a", "2"], "+",
SuperscriptBox["b", "2"]}]]}], ")"}], " ", "\[Alpha]", " ",
RowBox[{"(",
RowBox[{"1", "+", "\[Alpha]"}], ")"}]}], "+",
RowBox[{
SuperscriptBox["a", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\[Alpha]"}], ")"}], " ", "\[Alpha]"}]}],
")"}]}]}],
RowBox[{
SuperscriptBox["a", "2"], "+",
SuperscriptBox["b", "2"]}]]]], "Output",
CellChangeTimes->{
3.841981708653791*^9, 3.841998808798621*^9, {3.84199891206426*^9,
3.841998953417647*^9}, 3.842430227735865*^9},
CellLabel->"Out[17]=",ExpressionUUID->"d7f85bce-ac08-48be-b254-273d5c70021b"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"b", "+",
FractionBox[
RowBox[{"a", " ", "c"}],
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["c", "2"]}]]]}], "\[Equal]", "0"}], "&&",
RowBox[{
RowBox[{
RowBox[{"2", " ", "c"}], "+", "\[Alpha]"}], "<", "1"}]}]], "Output",
CellChangeTimes->{
3.841981708653791*^9, 3.841998808798621*^9, {3.84199891206426*^9,
3.841998953417647*^9}, 3.8424302300201807`*^9},
CellLabel->"Out[18]=",ExpressionUUID->"e4cea8d3-9aa3-43db-9bf1-e1e317c66c1a"]
}, Open ]],
Cell["Simplify further to plot:", "Text",
CellChangeTimes->{{3.841981677875375*^9,
3.8419816879369497`*^9}},ExpressionUUID->"032148a8-1f05-4f9f-a8b8-\
58af8e300b67"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Reduce", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"2", " ", "c"}], "+", "\[Alpha]"}], "<", "1"}], ",", "c"}],
"]"}]], "Input",
CellChangeTimes->{{3.8419802680958014`*^9, 3.841980272927093*^9}, {
3.841998840677285*^9, 3.841998877638629*^9}},
CellLabel->"In[34]:=",ExpressionUUID->"ab584dee-60c0-4245-a386-086be15a9f10"],
Cell[BoxData[
RowBox[{
RowBox[{"\[Alpha]", "\[Element]",
TemplateBox[{},
"Reals"]}], "&&",
RowBox[{"c", "<",
FractionBox[
RowBox[{"1", "-", "\[Alpha]"}], "2"]}]}]], "Output",
CellChangeTimes->{{3.841980270548791*^9, 3.841980273210763*^9}, {
3.841998841047996*^9, 3.8419988780678453`*^9}},
CellLabel->"Out[34]=",ExpressionUUID->"8a9dfe72-440e-42f9-af7a-3be5d4262f23"]
}, Open ]],
Cell[CellGroupData[{
Cell["Plotting", "Subtitle",
CellChangeTimes->{{3.842070382354838*^9,
3.842070383208271*^9}},ExpressionUUID->"4142b279-cc45-442d-b4b4-\
0a92a2a1376d"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{
RowBox[{"RegionPlot", "[",
RowBox[{
RowBox[{"c", ">=",
FractionBox[
RowBox[{"1", "-", "\[Alpha]"}], "2"]}], ",",
RowBox[{"{",
RowBox[{"\[Alpha]", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"c", ",", "0", ",", "1"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{", "LightGray", "}"}]}], ",", "\[IndentingNewLine]",
RowBox[{"BoundaryStyle", "\[Rule]",
RowBox[{"{", "Gray", "}"}]}], ",", "\[IndentingNewLine]",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "/", "100"}], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
RowBox[{"1", "/", "2"}], "+",
RowBox[{"1", "/", "100"}]}]}], "}"}]}], "}"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<\!\(\*OverscriptBox[\(\[Alpha]\), \(_\)]\)\>\"", ",",
"\"\<-\[Rho]L\>\""}], "}"}]}], ",", "\[IndentingNewLine]",
RowBox[{"AspectRatio", "\[Rule]",
RowBox[{"{",
RowBox[{"1", "/", "2"}], "}"}]}], ",", "\[IndentingNewLine]",
RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"1", "/", "8"}], ",",
RowBox[{"{",
RowBox[{"\[Alpha]", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Dashed"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"3", "/", "4"}], ",",
RowBox[{"1", "/", "8"}]}], "}"}], "}"}], ",",
RowBox[{"{",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"1", "/", "2"}]}], "}"}], "}"}], ",",
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"1", "/", "2"}], ",",
RowBox[{"1", "/", "8"}]}], "}"}], "}"}]}], "}"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "10"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Blue", ",", "Red", ",", "Black"}], "}"}]}]}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.84193813721942*^9, 3.841938178897398*^9}, {
3.841938226310466*^9, 3.8419382598762197`*^9}, {3.841938434004779*^9,
3.841938450159464*^9}, {3.841974477694519*^9, 3.841974588136791*^9}, {
3.8419746227445793`*^9, 3.8419746817955017`*^9}, {3.8419756821779747`*^9,
3.841975687965405*^9}, {3.841998846904551*^9, 3.84199884962306*^9},
3.842001813941976*^9, {3.842001948991599*^9, 3.8420020267767076`*^9}, {
3.8420021054763927`*^9, 3.84200212109453*^9}, {3.84200249703861*^9,
3.842002502610169*^9}, {3.84200299886058*^9, 3.84200300324737*^9}, {
3.842003045475874*^9, 3.8420030782107773`*^9}, {3.842003149696826*^9,
3.842003156307281*^9}, {3.842004347278573*^9, 3.842004361815099*^9}, {
3.842004401147509*^9, 3.842004575180923*^9}, {3.8420046100613203`*^9,
3.842004630189867*^9}, {3.842004674409749*^9, 3.842004705154068*^9}, {
3.842006716745472*^9, 3.842006732639832*^9}, {3.842006829880039*^9,
3.8420068741767473`*^9}, {3.8420069091738243`*^9, 3.842006942024867*^9}, {
3.8420635646743393`*^9, 3.842063637125082*^9}, {3.842063703493413*^9,
3.842063746875108*^9}, {3.842430236536631*^9, 3.8424303119733458`*^9}, {
3.855116501265975*^9, 3.855116503862008*^9}},
CellLabel->
"In[1005]:=",ExpressionUUID->"c448f860-34b0-4ccc-adbe-1f53a16afa5a"],
Cell[BoxData[
GraphicsBox[{{GraphicsComplexBox[CompressedData["
1:eJx1mX1UVGUawNHAr8ROaGWQZmo1p61EdDBLfc1p1TaWhlJL07HI/Bq/ltJ2
yHY9KqPRmlajsWXpuMSqgEN+a+MHIpKYKaswCCggjBKiwmAaVrDXc/xd5jxI
f3jPjy73vs/vfd7nfd7LI7FzX3mnbUBAQF/tn1vXOsv+iqamq6pDamoX5/Oz
hiW17xHictaow8f6xiz3bVYjt12O95iv6Mz98JCMD4ZbTD+r6KwH5i7z7VXV
b0RtsvuqdeZ5MM+DeR5c9nrRnGCvV01a9dMEr/Gw+iQw1WN0XNSZ98G8D+Z9
MO+DeR+8tM3gr93286qrurfR7stVEekd23mNlTozHpjxwIwHZjww44EZD8x4
4Jgx/b7wmM8p7/VNZofnpCoYO32gw1OmM+OFGS/MeGHGCzNemPHCjBdmvDDj
hb/6tqbe6PCo4dEv9fYaT6vrv6/ItvuKdCYemHhg4oGJByYemHhg4oGJByYe
mHhg4oFbiwuWV+KFiRcmXph4YeKFiRcmXph4YeKFiRcmXph4YdYBcZCHMD7k
vMq4YXnFB4wPGB8wPmB8wPiA8QHjA8YHjA8YHzB1jXFTl2B8wa2tW5n3Mi+k
F1he8QXjC8YXjC8YXzC+YHzB+ILxBeMLZt9gnPiD8QfjD8afrHOyTsh1JPNI
eoLlFX8w/mD8wfiD8QfjD8YfjD8YfzD+GBf+YPzBre1bcl+QdVXWHbnuZF5J
T7C84g/GH4w/GH8w/mD8wfiD8Qfjj3HgD8YfjD+5z8t9VO5Dsk7LOiXXocwr
6QmWV/zB+IPxB+MPxh+MPxh/MP54L/7g1voy2RfJvkPu23Jfk3Vd1i25DmVe
SU+wvOIPxh+MPxh/MP5g/MH44z34g/En+1jZR8o+TfY5sg+Q+6Cs87JuyXUo
80p6guUVfzD+YPzB+IPxB+OP57Z2rpB9v+y7ZV8r+0LZN8m+Qe6Lss7LuiXX
ocwr6QmWV/zB+IPxB+MPxh/PwZ88h8lzkjynyHOA7KNlnyn7LNlHyH1R1nlZ
t+Q6lHklPcHyij8YfzD+4NbOvfLcKs+V8lwnz03y3CH7ctmXyr5L9hFyX5R1
XtYtuQ5lXklPsLziD8YfjD/5nUCe8+U5XJ6D5TlTntPkOUb28bJPlX2X7CPk
vijrvKxbch3KvJKeYHnFH4w/+V1FfheR3y3kdwN5LpfnWnnuk+ce2dfLPlX2
XbKPkPuirPOybsl1KPNKeoLlNfO77WdDcy+ppG75x7zG7eqhjuNcVsNV5SoZ
dl+i70v1zoSunXOtVart4Kc+cngONuf77fs73hX3rC3Yq3ZfnPtkpCNHHy/3
p6eenG5wlas5a7ae8Jh/0uPl/uSNlqddzhL12Yb4PW77/3Rf3H+lIezjYG++
fsU393Pf6Jh9Ey2mM/p8cT/j4D3MN/cTZ2PTrf9K9XzhfvKL/49Pfm/upISR
Jttl3QdMHnZtV/meL7RaHwfMe3ZtGfEfp/uC7gMmT994zZlntlToccLEwbjw
AZPHxIkP6Ynf4+cweS7nCdbr7u24eS8s1wG+2g1MPGp0aOugMe7rFb5EPd/g
xvDuK932alVvXfB1pGOX2nBmwT6r4aLKqPyjzm0/pEYuzr8Umluhpn4+fLXF
dFRVPzEwNNdaprRJeigg4KR6+L+PfuoLLVIzfj1/2Ww5pV8Pv7z0gNNdoP8e
9/Ge+MYjsSbbWTVh+Z43g72XVZce59MvGJOb6/ntuNJKqm5UGmvU0H0Dbjo8
Gfp6ZH7NCaMec3iq1KbQPcMLzfv19Yy3a0+ljDHZvKrTkHVZwd5svR4wv0kF
gUt8oefVweryqS7nj7pH5oVxuqNCEgyuPH2emF/ifCB52zhbcH6LPMBT3G9j
DLnWQj3PmF88H3/lekNobrGex8wvXgybvzhmNZTq84cfvY7fZnzii3oj6wnM
/OOP+iPrC0x+4JN6JOsNTP7gl/ok6w9MfuEbT7IeweQV/ltbdzD5yXwwTlmv
YPKX+dG9ifoFk99yvpjX/uceWe10X2kxP/p3J/uiLLPlUov5IG/i+5XWNTW1
9M+4exYO7eVyVrbwTV4eWrQ22mIqb+EXT8QpfZL3/Fz6Y154r/TFuiIu/KyI
X/Oww6+P7d/nl7+a7vD3mRFp6wd10fI7/9irC32VLf/e4gnsesCgvcf23tbN
zjv8fWTFtrGxuZ/nqCHP9t7qvMPfK0yxSUGztDjsH5d2CbjD3wcWLp992q7l
58mStVbLHb63F5Z2SfFU5quIidtX2e7wfTpiUMb7Bi3/uv/2veFMbcvvtZ98
EvOiTZuHkMwzSU7Nx5y3a90ZdZvVzhnP5Jg1H31W/pEcpt03IeSLX5q0+Ecv
yJzv0t7TuPeXPi4t3sa+gQ/G3OpLczYmu7XnFs3oY7Fp41zVfWqbMG2cxszD
/XK1ccqf85xLc9ufsmrj5b08Z0Rw9Eb74ktqTe26Xi80fKfWTrlq85RdUclR
M6ffFfCZnt9PTnJG9buaqC7sSCsw9tX6l+hHpy2LO6BKf8reafXrXxItdwd5
syvVrrH547zzj6gl7/f1hvr1L0+3nznAMa1czQ7sftMecVw93mtJ11y//mXD
5E+z7CFa/zI+PdpxI08d+6H8eZtf/1KTEd3LOzZfv5adX1Rm9utfeO7oDrV1
xu2F6omBw4a6/PuX2+PmPVWdbgwI8+tfiLtxZ8Rqz7xS9euEiiJXXcv+pT5O
W5VaPWB9V41pemdfQYY6OGtzm1y/fob1PWbr0rQAbV2wnkvbJzQ4K7P19bt6
Z85ak7aueE9KRNB635a85nEnpvzNpK1LPEwsH2VyaOsTr7uf+bmb92ix/t6Q
VYkXjNr6m7dhZW+HNj+zy/a2idfm58eG8GuV2vgCOxfUFNV+qbq9dMVs0uan
pmevZMut59RH/dOnzceG47GjArT5mLg2Nd2p+X994bfVTu29bRK77XZqvpfd
d+2IU/P9UnFet4DI06pi1uokn7Y+DON7Vrg1n0MPR840aT5tN/oPrtfy+t9h
hc85tLjCQwwnOv6pWPeHL8bDfgfT/8VG2RIGDUzW+71v7hrRcfLnu/T+LiGj
4vEYbZ+ln3tu8mPHfCOO6nW7LnjGHEfTCX2ex5zL7xCm7RPkzRbj+0VWbZ8n
Dzut6J7mDm3ux6ZU7vkwWOsTeka/+bHbb/3W7u55r6v/ZXVgyd6bL9hSVE55
wRbrvKsqfs43te0CFqtZ3T+Y6fP7ezb92qKmQZ0LL8WrNYdCIi1+/dqh6/v3
WP3qgeOtD5Xl1M8qat35LO+O3WrfuSnv+WKrle9McY53/k41dV2PqlBvc714
plPJ7OD5F9TExgEJjgey1FvLsjY4Ay+qLV+FL3PcyFSdRi+8P9evnpRsfXat
+/4KFZK+wBB5+qgKCu+dZ06pUFP+8u4Tkdt/0PJsx0c+v3rDuqhML/FaR59U
mwoXNTWNKlOhDTuOe+ad0PL23Qtmv3rEOhwW9I9d7pRTan3bA29YTp1R1a8u
3O2+/5SqXRJucvnVK9b9lxMf/ig4yKPf90Jqj8Tg+QUqbnOxCotsrmfUmWvb
Dk6wvF2kj5v3hA4c751c31zvqHPmu2OfdGWe1T3eHP/mU67+Z/X+lPl9MLLd
SFPmZdW5Ia3tnxucen/K/NCP4p/+E7/sA/hjX8EP+xTxs+8Rn/794vb4rYnG
s6EhNerv4yJeXB7n0vtBy6TOo/cXrFf3DHDcnbutSm1c3tO6LGKfmnJfx3Cb
3/rfVuwbbBur9cv1ea97x2arDvunWQx+6/+1pTHTDTfK1UFnt9/tIT+qtKlH
/uXxqwd4GrIx9WXHtDxlvufR7+1+9YF5SmqKesSbfVqPg3pBnvjGXfEZ+xbq
Hqgf5Gn0lpWH7YuLdY/UE+ZhY1D/NZ6yc/o8UF/+D0scJZo=
"], {{
{GrayLevel[0.85], AbsoluteThickness[1.6], Opacity[1], EdgeForm[None],
GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNmQXYF9USh/d8KAaotIWoiC12x7VQQFRUFFsUOxDsFhUMEAwURMDu7u7u
TuzuLryi3juv8+6zPs83z+zsmXNmfnPO7n9++y04eOgW+7dUVTV3q6qKv2rL
UlUDQpYOOSBkhrg3S8gRcX14yAYhh4W0jXudQw6K6wND1g3ZOWRQSM+QwSG7
hCwTslvIriHLhRwcMlPMmz3k0Lg+JGT9kC5VrjlbSLuQmY07p/fw716lH/fm
DplD3z1i/u4hK4QcGdIx7nULmct5+B0d948K6R0yf5U+nUIWcj18F/AeuE4M
v5Ehm4Qs6L0urjWT+fVwHrnsFX57hqwUsmTY85nDUmpinhBjx4f0C1ki7K76
9XSc+Euribmc+RFnn5izd8gq1NRx6nFMyXUWDzkurhcNvXLIqiGLeX/tKucs
G7JGlfmR1ypV+uM3POYeG9I3ZPUq88NvRNgrht4gZDXXY2wt8ybfdVybfPcL
/31DVgv5j+PEXtOYPfXtLrYNq1x/JeaGbB2yTUhf8wPHRmriby4eYvYRK379
HCf3jdVg7W+u5LKZmvmbOE5e+0euQ0LWCNnUe8w5JeyTQ/qH7GQe/cxx/ZBe
5trL+myrBtN26t4hO5grmAZXGYO8Brke+e6sJq8d9SXeSSVjDQzZxXHm7+oa
YPo25M2QqSGnhv/okM1DRoVsGff2ChlqTtuHDIv7Q0PW4kxV6bNVyD5qYg0R
G5j2VzN/X8epwTDXA98BanI/UE3NjgrZI2TPkIPFDNZD1GA6zLqA6SDnDbJ2
K7nHh+qL327i5iwc7dpgPEYNpiNDdjf24a7NvGMdB+twNZiOU3MGR4iZmo1U
g/VU8yDfE6wRfic6Tg1OUlODUWIG62g18092HKxjXI8cT/Eec04LOUIc5xiP
vM6wpuA+Uw3ucWrwnaUG33ixHR9ye8hFIReHTHQ98J2rBscEfYl3uvGJN8lx
8E1Wg2OKmtzPFzNYL1BTswvVY4w9VnyXqIlzqRp8l6nBd7kafFeowXel+uyQ
84xP7Ku8B+5rxEP9rhMzWK9Xg+lqffG7Vt+JrjHc2t2gL7hvEjMxb1aD+xY1
uG9Vg/tG502xrpwvzs0d1oIa3CV+cN8jZrDeqwbrI+ZNLnfri999joP7fjWY
HhIPuB9WM/8Bx6nNo65Hjo+pwfe4GnwvGI+8nhQn+J4Oua3KM/WseO4MecJ5
+D1oHPJ4Rt/a7xIxv+jaYH1JDabnrQuxn3MONu8b3gu8T1/WF9yvio2Yr4sf
3G+oqd+banBPVYP7LTW431aD4x01uN8LeUrc76vB9IGaGrxmfGJ/6D1y/1g8
1PJTMYP1MzU4PtIXv0/0xe8V8YHtc32596WYifmVGtxfq8H9jRrcXziPOZPd
a/Z+inuN/YP4wf2LOME33VyJ/6ea9X62Lvj9FPKu9q/OowZ/iJn508RJPX5z
HPsv1wPTf8XPnL+9B76ZS8Yjr6okTvCVkprfwFZx/V3o70P+5zz8WkqOMzZD
yXGwzlJyPfJtHdc/imPhuG4X0p5eteQ9Yv9u7uQ3a8l54GhTUoNvjpKYqRlr
TLdmc5bMgxxnL4kTP2L8aQ06lNTg7lwSJ/i6qJnfseQ4+GYrmRNrzeXa4Ju3
JB5y717Sj5jdSmIm93lCZtSvbcncWWu+krXGbxFrQF5dXY+xBUpiZt5Crg3u
HmpwL+g4sec3JnM6lcwdbIu6Npjog+k36S2XKIkf3EuqqR98Aq4AT1jctfBb
ynFqsE5J7gKXgZfAYejVly/JRdrE9bIlOUrrKvkHnASOAXeBx9DfI/T68IeV
S3KLeeN6xZI8pkOVnAY+BJeAG8GL4A/kB1fo7Hw4AhyDsQWq7PXhK3ARend4
yZHWgJhzO4e823mvo/O6ue6CrsVZ5v31tnPgCvTVq5bkIotUDa/oaR6M03/D
V+j34QD0/nCJxaqGtyxpzJ7aXd2fxY2/jOuy1rLarL2cNvPpsenF4S7wHnp9
OBBchd6OePT29PCrl+Q3K3Dfc9HJ/Bhf2bp2Nz45rWkMclxLewlj1nxlNWOQ
63/0I9e1tcl1HW04H5yHnp5c6eE3MAa9Nz06/AZeSF8Oht76kV8fbWLS229U
NZyknzj66keum7puzXP6ml9/x2ousa350fP+w2NK8pUBVXIXOAp9PHwFzkAf
X/MTenX6X3rMw8xve9cljx20aw6zTdXwpf7mtKN+5LiTNngGaYNhlyp7evIe
rN3f2INdbzfttUvyD3p0uAh8hV4d7gJvoacHD706PX3NT7DhH/tq19xpkDj3
c6zmLUPERn8+tGq4yjBxDnHOdo4zZ33XGlg1fOYAY9CbH1Q1HOZgcR6qPdga
H2pdDnL+miU58XpVYqavpr8HJz38UWKjbz+mavjJsVXDK06sGp5zdNXwluFi
OF675i0jxHmiNlhP0I+cTnZdcjxFGzyjtGtecaZ46OFHi2+MNjjo20+rGp4z
yjqOMN4RjtP37yHWI6uGq4wTw9naNbepuc4ZxuD3m77tLXGOdw4x6NsnVA2f
mSjuSdo1b5lUNbxlsjjP0ybv87VrDnN+1XCYC8RA335R1XCYi8U60TxqPnNJ
1XCYy6qGt1xh3ldp15zn0qrhOZe7TxPEiVztHGLQU19jzOu0a25znThv0J6g
L/P5neM3oEvVcBj6P94Zk3yngY1e/Tax3aFdc4z7qobn3CLOO/UDw13aNYe5
R5z3aYP1bv3I6QHXvVzfu833QcfIg377qarhMw+J7RFtsD6qXfOZR8VHD09P
T/9Ln/m5eJ5xXfJ+Vhs8TzrnWuM8KJ7n9CPv57XJ9QXtmsO8KNaXte839svi
eVWbdV/TJs7r2jVveb1qeMsbVcNb3qwa3jLVmr1oHjWHect60Y+/WzVc5X0x
fKhd85y3q4bbMKfmgY+J8yPnEIP+92Njfqpd85lPxfm59vP6Mr+tfSH9I5i/
dD9q3vJV1fCWr8X5rTY4v9MG2/fa5P2DNjjp1X8Uw8/aYPpFG8y/aoPnN23m
0zvTQ5PrNMfARn/9u7nSn/8pzj8cA+d0bTDQ3/5tHvTX9Nngqex9a96CDR76
emzwEB/7Y2NOEwO9N2udXrJnbe3a9Pr08uChZ6c/Bw/9NnbNT7CnuQfYrE1v
jg0GenhsMNDDY9ccBhvMcAHsmqtgg5M+rYPYOtm3ga2z/VvNYTqLbU5tsM6l
PaM45i4Np/1S3F3FCbb5tMHWTRts82u38Xxhs9/MYY2au04Xd3fPInwCXjGj
+OA8C4tnUe0xJTnFDNaD8R7iXEw/cC6uDR44CdzltJJcAz4B/iX0O6MkH/mH
K+jL2MCS/IT95X28mu/krUtyGPjL2SX5CP34NiU5CXxkQsmen355Yslemh6W
Por+kB5q+5J9Nj32lJI9JOPbleQM8IVxJTkOnGOHkr1L3bfQs/EbvmPJHpT+
c72SvIn/I4GTa7gL/xtiDC7Wy1pTZzBzzW8R/wPqJd4NS/KpWauMzTWcif89
bSj2PiV5U/u43qkk32N9asF9ONRGJXnNPFX+XwMb7rZxSQ6ycJX/D+pj3agX
/nCRbUvyvX+4XpX+9Pibluz5l69yP7imv+b/RJtaz81K1nndKv/Xs7H15Fla
yDNX8+SFrCN9Lz0g52uAZwzN/+GKcbd3fb7tb2HNt9Jnaes30BqCddt/4d3O
HKjf1taQPHdwT6nBNtaBtXd0fWq/q3vB+R1Umr0d5F6jd/aas7yL5xk92L1m
TTBuUeV6u7km53d3z/ByxuroWdrJPe2tD3uN3sNrzviennP0Xu41533v0uzb
3u41eh+veZ7gb/Ue7uueovfzmmdiSGmemyHuKXp/r/uawzw+E0PdT/Qw8fIM
8P1hFuvG94iZ3fOh+owt+X7Bj/83bea+jNW/lTXhWWIN3v+8U+pvFujZfZ4O
8d6B+rfyHco7mnd2/Z2anmiu2LSLS75Tzir5DaKDNeea5wjhuwTfA84t+U6p
uTEavshc3hf4nVeSvw2wtiP15ezxDHOmDveac8izzTcTvmfw7PH9Ab5+Tslv
BJxb9AleH2CteEbGl3wPHmO+R5t/H697/ysecc70uo3PBWtyRpZ2TWqFHus1
70p64oGeAXg19yZ7zR6Bl3foKPeN/esvbt4LPLPsCe84ns2T9VnP5xof6sSa
vOuJx7uA9fZy7unudU/3vbX7O9Yzw/PFe2Fzx0/XZ7T3B3hGGJvJfRxpbpu7
X8S8PvR7Jd/p/aw/7z2EbzV82+D35Rz3gnvYPIPjPEMdPC/YHX2ux3n/eOcy
bwX3jnfUUc5l3iqesRV8BqeY/yivt/Tc4cMzjj5X/5Fej/BMsH5Xn/dJ1vyb
0B+VfJ4mWXfuT/HsDnCPJrsXvNPO8MysJF6ws/Z482f8TH0O07+tZ3iCePm2
Nlz/8dpcH+5c5m2kT18FH56JmeI5/cp9niGuv/Sslbj+ouQ56uUZ4x3wU8jH
3hstrlGuN97a/BryScnn8u+Qz0s+E11izQtL9h+/h3xa8nmaHvKZOc4SPl+X
fOc/HbpHS56ZK0JuLfmObR/3WrXke3L20H+UfE92iOvWLfnemzV0p5Z8118T
cntJ/+dCf1Dyd32OGP/LNe81P3J7IORFz1E7EmnJ9/bjYS/Qkv3NdSF3lIx1
T+jn3c+nQl4r+c5+IuTVkmeNmB8alzWuLrnOVSG3lVy/W9y/smSf1DWuLy/Z
K8wT15eW7MO6x/W1JXumS0JuLvmbdVnoW6wDNeN5o27nh9xgPS8IfWPJ303W
eNd1Lgq5qeTv5pPG4D4xpxp3trg3zVj3hX6h5PP3aMm8VzUO+0cssL4hXn4H
3iz5W8A+tHfvbrO+YOdcvO7ZIJe2LZnPre4Te3SzeZADWNl78LIPHdx38LVp
SYyPxPXLJZ/7Z0LeL/ldkGeC54jn4v6Sv1XLG/MX6/Cwe0D9H3QPqAN78pb7
8m3I9yX7JGL+aG0fC/1KyXfDDyF3l+yn2PN33PeHQl4q+dzfGfJsyXcw+/+2
Z+D/n94b4g==
"]], PolygonBox[CompressedData["
1:eJwt0/0vl1EYx/H73CjzW5M1zMxaPyLK0zeRZtZaM/uuSE8zMzMz/EXMmllr
/Y48lIdSCz0TylYhJYokFfW+dj6bl+s+D/c5133O9c2ob4u2hkEQRBCLZy4I
UuloIubhJ4aQixo8RxrjzcQCzOIusjXnJTIYbyWewgz6kIUzeIpkxhuJJ/Aa
vcjEcWxhQM/VeIWjzG8nnsYLpNNuIRbhMM+TWvuG9vqGS9pzGkeY00DMwRJ2
cRnn8BbjWqsYnxAy/yqxUnPv4aTeeYNBrWV9G1gHf8FF/v3ANiqQQN8K8R+u
4AK+YxPliGP8g765Wn3v7b3Qf8tZ7GFf7x5jfsCYC31uuTR/E//gPFJoH2Ds
IKK0o7Q/E+NpX3e+76PutEY5rloejF8jVmEZf1GrNWMYiw39WBnrfSGuKTer
GzurBzxHnD8zq51u5dKku7qlXO3O5nFftVWovUaQrz378dX5s7Q7fIJE1qhT
jUwhiXa9as5yn9Dd2TcsYNT52ozo7Me0l92B1W6PztJq+B0eOl+rJTqrx3q2
M7Navq1vt5q22r1JPBT4Grba6tJdNyjXDp1NnXLt1F1bzjv4pdqzNRaJj5yv
7VLMYdj534adidX+Hd2l/Qb+A6ZFam8=
"]]}]}, {}, {}, {}, {}},
{GrayLevel[0.5], AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJwt0tlaTXEYwOElJZmKDGWsRCUnrkC3QHfg4VSn3INugVLIPLQbzZmKTFGG
ypDMNJrL8H7P4+Ddv299B3uv9V+7cFvV1p0zkiRpp9IQ84iPUT7TzhhtPOIl
L7jN4rQkmcOQ+RMfyXJ9UveSa+7WVvqoYandOZ3kFROMM9f+lO5jifmOnuUx
+8mzu6DfGOYrX5hnf1prWWa+q+d5Qj3L7S7pT17zg+/Mtz+jdeSb7+lFnnKQ
lXYdOs0bpvjFAvtGPcAK8329TD8NrLa7qn95yx9+k22f0kOsMvfoFQY4QoHd
dU3Td/EeNCGHJteHWWN+oNcY5BhFdp2aoe81XWeykGbXRyk0P9QbPOMExXY3
dbZ+0EydxSJaXB9nrblXu3jOLTazw63tpppamuhikHEy4kzj7OOM4izjmeNs
4hniWeOe4t7jN+JeWMd6SiiljA2UszHefzxb/Bd9/wCdpKhhD7vYzhYq2EQx
+eSQRfr///g/vZFkWA==
"]]}}], {}}, {{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], Dashing[{Small, Small}], LineBox[CompressedData["
1:eJxTTMoPSmViYGAwAWIQ7ZX64uKBl6F2DGBwwH6BqH9bl2SLPYzfyLFZvVNy
CpwfEblw/YePS+B87v+NMe5y6+F81cB3Lw53b4Hzy89Z2s/4shPOF98ieI+R
cT+cv+2R85nzNofg/ENZc6Uj3xyB87+q2fKvzT0O5zP9XC0grXoKzjf7n7At
eN0ZOP9Mi8m5Y1rn4Xz5Ca9/rnx3Ac5//f3+vasGl+D8Ja92n+Lruwzn88ku
f//kyRU4vydza9oClWtw/jeH1U8y6q/D+SVGR7aIHb4B599fd6T7ouItOP93
1pXZmlW34XxtR/Z/abvvwPnuixTTN4rfQ4SXbLzSw5j7cL7Om1Du674P4Hxh
/g8cR34h+Cz7Z69XnvMQzs822X2T0/sRnL/aM2nBvm8I/tfXUgLPpj2G87cG
uzNPcXkC59d7tM7f8gzBV7zrdWNx61M438q8ZYqk0TM4P0bu/E/Gywj+11O9
jwoan8P5M1jiSoJUXiDcf2/rIqYjCD5rbWOIZeFLOJ9hZdz6R0Kv4PyiWet7
hQ4h+Hu1OzgE817D+YJeRTpNfG/g/Du6Fy5X7kHwN8yzV3kS9xbOj11vJij7
D8FvaF3YeGfVOzh/7QvZ2Xw+7+F8pRYRD/ZlCP50ee6v//8j+AACUQfH
"]]},
Annotation[#, "Charting`Private`Tag$183821#1"]& ]}, {}}, {{}, {
{RGBColor[0, 0, 1], PointSize[0.012833333333333334`], AbsoluteThickness[
1.6], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
AbsoluteThickness[1.6],
RGBColor[0, 0, 1]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{0.75,
0.125}}, {{0.75, 0.125}}}]},
{RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[
1.6], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
AbsoluteThickness[1.6],
RGBColor[1, 0, 0]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{0., 0.5}}, {{
0., 0.5}}}]},
{GrayLevel[0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6],
GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
AbsoluteThickness[1.6],
GrayLevel[0]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{0.5,
0.125}}, {{0.5, 0.125}}}]}}, {{}, {}}}},
AspectRatio->NCache[{
Rational[1, 2]}, {0.5}],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{Automatic, Automatic},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"-\[Rho]L\"", TraditionalForm], None}, {
FormBox[
"\"\\!\\(\\*OverscriptBox[\\(\[Alpha]\\), \\(_\\)]\\)\"",
TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" ->
None, "TransparentPolygonMesh" -> True, "AxesInFront" -> True},
PlotRange->NCache[{{
Rational[-1, 100], 1}, {0,
Rational[51, 100]}}, {{-0.01, 1}, {0, 0.51}}],
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.842063586678557*^9, 3.842063637423604*^9}, {
3.842063710947744*^9, 3.842063747236452*^9}, 3.8424303131597223`*^9,
3.855116506636516*^9},
CellLabel->
"Out[1005]=",ExpressionUUID->"ba03044e-4ab0-41a8-83c5-f19a2df7f767"]
}, Open ]]
}, Open ]]
}, Open ]]
},
WindowSize->{808, 897},
WindowMargins->{{Automatic, 247}, {-8, Automatic}},
FrontEndVersion->"12.1 for Mac OS X x86 (64-bit) (June 19, 2020)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"2a7fffdb-be7d-4ca3-b611-37f001d84466"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 157, 3, 98, "Title",ExpressionUUID->"0b21bd69-ca26-4f5b-b79e-d14c06890092"],
Cell[740, 27, 177, 2, 30, "Input",ExpressionUUID->"d37797a8-0712-4fae-aa59-d5a8173afe92"],
Cell[920, 31, 219, 5, 35, "Text",ExpressionUUID->"06beab3b-4460-4475-bb21-f5fbab34ca68"],
Cell[1142, 38, 2510, 82, 157, "Input",ExpressionUUID->"3e197fc1-bca3-4cac-bd73-c3e209dd26d3"],
Cell[3655, 122, 183, 3, 35, "Text",ExpressionUUID->"20532a89-c2a6-4b92-b625-23438372a206"],
Cell[CellGroupData[{
Cell[3863, 129, 3476, 95, 283, "Input",ExpressionUUID->"4a9deb15-9103-466b-8a5f-4c0f11dd7fed"],
Cell[7342, 226, 802, 14, 53, "Output",ExpressionUUID->"afb534d2-4458-4abc-a0bf-ce50931b1be8"],
Cell[8147, 242, 795, 14, 36, "Output",ExpressionUUID->"84052630-3585-4aa0-8b8b-c3ede3a60c65"],
Cell[8945, 258, 3155, 90, 98, "Output",ExpressionUUID->"6443ce15-a050-4570-a49a-707fefafd8d6"]
}, Open ]],
Cell[12115, 351, 221, 5, 35, "Text",ExpressionUUID->"f287c4cf-47de-4885-af92-ba39f06f7315"],
Cell[CellGroupData[{
Cell[12361, 360, 753, 21, 52, "Input",ExpressionUUID->"9c16fcbf-38d3-4085-8180-0ea0bab8d932"],
Cell[13117, 383, 968, 30, 69, "Output",ExpressionUUID->"d7f85bce-ac08-48be-b254-273d5c70021b"],
Cell[14088, 415, 523, 15, 53, "Output",ExpressionUUID->"e4cea8d3-9aa3-43db-9bf1-e1e317c66c1a"]
}, Open ]],
Cell[14626, 433, 169, 3, 35, "Text",ExpressionUUID->"032148a8-1f05-4f9f-a8b8-58af8e300b67"],
Cell[CellGroupData[{
Cell[14820, 440, 363, 9, 30, "Input",ExpressionUUID->"ab584dee-60c0-4245-a386-086be15a9f10"],
Cell[15186, 451, 392, 10, 50, "Output",ExpressionUUID->"8a9dfe72-440e-42f9-af7a-3be5d4262f23"]
}, Open ]],
Cell[CellGroupData[{
Cell[15615, 466, 154, 3, 53, "Subtitle",ExpressionUUID->"4142b279-cc45-442d-b4b4-0a92a2a1376d"],
Cell[CellGroupData[{
Cell[15794, 473, 3766, 89, 250, "Input",ExpressionUUID->"c448f860-34b0-4ccc-adbe-1f53a16afa5a"],
Cell[19563, 564, 14623, 268, 216, "Output",ExpressionUUID->"ba03044e-4ab0-41a8-83c5-f19a2df7f767"]
}, Open ]]
}, Open ]]
}, Open ]]
}
]
*)