-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtest_relative_homo_mmim.py
669 lines (538 loc) · 24.6 KB
/
test_relative_homo_mmim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
import argparse
import json
import logging
import os
import os.path as osp
import time
import warnings
from collections import defaultdict, OrderedDict
from pathlib import Path
import cv2
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import numpy as np
import scipy.io as sio
from tqdm import tqdm
from src.utils.load_model import load_model
from src.utils.metrics import error_auc
from src.utils.plotting import dynamic_alpha, make_matching_figure2
def make_matching_plot_fast(img1, img2, mkpts0, mkpts1, mkpts0_f, mkpts1_f, color, text, show_keypoints=True):
"""
Generates a visualization of image matches.
"""
H1, W1, _ = img1.shape
H2, W2, _ = img2.shape
out = np.zeros((max(H1, H2), W1 + W2, 3), dtype=np.uint8)
out[:H1, :W1, :] = img1
out[:H2, W1:, :] = img2
# Draw matches
for (pt1, pt2, c) in zip(mkpts0, mkpts1, color):
pt1 = (int(pt1[0]), int(pt1[1]))
pt2 = (int(pt2[0] + W1), int(pt2[1]))
cv2.line(out, pt1, pt2, color=(int(c[0] * 255), int(c[1] * 255), int(c[2] * 255)), thickness=1)
if show_keypoints:
for pt1, pt2 in zip(mkpts0_f, mkpts1_f):
pt1 = (int(pt1[0]), int(pt1[1]))
pt2 = (int(pt2[0] + W1), int(pt2[1]))
cv2.circle(out, pt1, 2, (0, 255, 0), 1)
cv2.circle(out, pt2, 2, (0, 255, 0), 1)
scale = 1
for i, t in enumerate(text):
cv2.putText(out, t, (5, 20 + 30 * i), cv2.FONT_HERSHEY_SIMPLEX, scale, (255, 255, 255), 1, cv2.LINE_AA)
return out
def make_matching_plot_fast_correct(img1, img2, mkpts0, mkpts1, mkpts0_f, mkpts1_f, color, text, show_keypoints=True):
"""
Generates a visualization of image matches.
"""
H1, W1, _ = img1.shape
H2, W2, _ = img2.shape
out = np.zeros((max(H1, H2), W1 + W2, 3), dtype=np.uint8)
out[:H1, :W1, :] = img1
out[:H2, W1:, :] = img2
# Draw matches
for (pt1, pt2, c) in zip(mkpts0, mkpts1, color):
c = (0, 255, 0)
pt1 = (int(pt1[0]), int(pt1[1]))
pt2 = (int(pt2[0] + W1), int(pt2[1]))
cv2.line(out, pt1, pt2, color=(int(c[0] * 255), int(c[1] * 255), int(c[2] * 255)), thickness=1)
if show_keypoints:
for pt1, pt2 in zip(mkpts0_f, mkpts1_f):
pt1 = (int(pt1[0]), int(pt1[1]))
pt2 = (int(pt2[0] + W1), int(pt2[1]))
cv2.circle(out, pt1, 2, (0, 255, 0), 1)
cv2.circle(out, pt2, 2, (0, 255, 0), 1)
scale = 1
for i, t in enumerate(text):
cv2.putText(out, t, (5, 20 + 30 * i), cv2.FONT_HERSHEY_SIMPLEX, scale, (255, 255, 255), 1, cv2.LINE_AA)
return out
def compute_mask(real_H, mkpts02, mkpts12, threshold=3):
mkpts02_h = np.hstack([mkpts02, np.ones((mkpts02.shape[0], 1))])
mkpts12_h = np.hstack([mkpts12, np.ones((mkpts12.shape[0], 1))])
projected_mkpts12_h = (real_H @ mkpts02_h.T).T
projected_mkpts12 = projected_mkpts12_h[:, :2] / projected_mkpts12_h[:, 2, np.newaxis]
projected_mkpts02_h = (np.linalg.inv(real_H) @ mkpts12_h.T).T
projected_mkpts02 = projected_mkpts02_h[:, :2] / projected_mkpts02_h[:, 2, np.newaxis]
error12 = np.linalg.norm(mkpts12 - projected_mkpts12, axis=1)
error02 = np.linalg.norm(mkpts02 - projected_mkpts02, axis=1)
mean_error = (error12 + error02) / 2
mask = mean_error < threshold
return mask
def make_matching_plot_fast_only_pt(img1, img2, mkpts0, mkpts1, mkpts0_f, mkpts1_f, text, show_keypoints=True):
"""
Generates a visualization of image matches.
"""
H1, W1, _ = img1.shape
H2, W2, _ = img2.shape
out = np.zeros((max(H1, H2), W1 + W2, 3), dtype=np.uint8)
out[:H1, :W1, :] = img1
out[:H2, W1:, :] = img2
if show_keypoints:
for pt1, pt2 in zip(mkpts0_f, mkpts1_f):
pt1 = (int(pt1[0]), int(pt1[1]))
pt2 = (int(pt2[0] + W1), int(pt2[1]))
cv2.circle(out, pt1, 2, (0, 255, 0), 1)
cv2.circle(out, pt2, 2, (0, 255, 0), 1)
scale = 1
for i, t in enumerate(text):
cv2.putText(out, t, (5, 20 + 30 * i), cv2.FONT_HERSHEY_SIMPLEX, scale, (255, 255, 255), 1, cv2.LINE_AA)
return out
def load_vis_mmim_pairs_npz(multi_model_data_root, test_list):
"""Load information for scene and image pairs from npz files.
Args:
npz_root: Directory path for npz files
npz_list: File containing the names of the npz files to be used
"""
with open(test_list, 'r') as f:
data_names = [name.strip() for name in f.readlines()]
total_pairs = 0
scene_pairs = {}
# data_names=['Medical/PD_T1/']
for name in data_names:
data_path = osp.join(multi_model_data_root, name)
list_path = osp.join(data_path, 'list.json')
pairs = []
with open(list_path, 'r') as f:
data = json.load(f)
for group, files in data.items():
mat_path = osp.join(data_path, files[0])
img1 = osp.join(data_path, files[1])
img2 = osp.join(data_path, files[2])
mat_data = sio.loadmat(mat_path)
T = mat_data['T']
T = T.T
T = T / T[2, 2]
translation_matrix = np.array([[1, 0, -1],
[0, 1, -1],
[0, 0, 1]])
T = translation_matrix @ T @ np.linalg.inv(translation_matrix)
T = T / T[2, 2]
pairs.append({'im0': img2, 'im1': img1, 'H': T})
# pairs.append({'im0': img1, 'im1': img2, 'H': T_n})
total_pairs += 1
scene_pairs[name] = pairs
print(f"Loaded {total_pairs} pairs.")
return scene_pairs
def aggregiate_scenes(scene_pose_auc, thresholds):
temp_pose_auc = {}
for npz_name in scene_pose_auc.keys():
# scene_name = npz_name.split("_scene")[0]
scene_name = npz_name.split("/")[0]
temp_pose_auc[scene_name] = [np.zeros(len(thresholds), dtype=np.float32), 0] # [sum, total_number]
for npz_name in scene_pose_auc.keys():
# scene_name = npz_name.split("_scene")[0]
scene_name = npz_name.split("/")[0]
temp_pose_auc[scene_name][0] += scene_pose_auc[npz_name]
temp_pose_auc[scene_name][1] += 1
agg_pose_auc = {}
for scene_name in temp_pose_auc.keys():
agg_pose_auc[scene_name] = temp_pose_auc[scene_name][0] / temp_pose_auc[scene_name][1]
return agg_pose_auc
def order_corners(corners):
rect = np.zeros((4, 2), dtype="float32")
s = corners.sum(axis=1)
rect[0] = corners[np.argmin(s)]
rect[2] = corners[np.argmax(s)]
diff = np.diff(corners, axis=1)
rect[1] = corners[np.argmin(diff)]
rect[3] = corners[np.argmax(diff)]
return rect
def draw_homography_comparison(image1, image2, real_warped_corners, warped_corners, mean_dist, file_name, save_path,
method):
# Ensure the input image is in the correct format
border_size = 100
image2 = expand_image(image2, border_size)
image1 = expand_image(image1, border_size)
real_warped_corners += border_size
warped_corners += border_size
if image1.dtype != np.uint8:
image1 = cv2.convertScaleAbs(image1)
if image2.dtype != np.uint8:
image2 = cv2.convertScaleAbs(image2)
real_warped_corners = np.array(real_warped_corners, dtype=np.int32)
warped_corners = np.array(warped_corners, dtype=np.int32)
real_warped_corners = real_warped_corners.reshape((-1, 1, 2))
warped_corners = warped_corners.reshape((-1, 1, 2))
# combined_image = np.hstack((image1, image2))
combined_image = np.hstack((image2, image1))
combined_image = cv2.polylines(combined_image, [real_warped_corners], isClosed=True, color=(0, 255, 0),
thickness=2)
combined_image = cv2.polylines(combined_image, [warped_corners], isClosed=True, color=(0, 0, 255),
thickness=2)
plt.figure(figsize=(12, 6))
combined_image = combined_image.astype('uint8')
plt.imshow(cv2.cvtColor(combined_image, cv2.COLOR_BGR2RGB))
plt.title(f'Homography Comparison ({method} Mean Distance: {mean_dist:.2f})')
plt.axis('off')
save_full_path = os.path.join(save_path, f"{file_name}_homography_comparison.png")
plt.savefig(save_full_path)
plt.close()
print(f"Saved homography comparison image to: {save_full_path}")
def expand_image(image, border_size):
return cv2.copyMakeBorder(image, border_size, border_size, border_size, border_size, cv2.BORDER_CONSTANT,
value=[0, 0, 0])
def save_matching_figure2(path, img0, img1, mkpts0, mkpts1, mean_distance, correct_mask, svg=False, n_pix=3):
""" Make and save matching figures
"""
# bool---float
correct_mask = correct_mask.astype(float)
precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0
n_correct = np.sum(correct_mask)
n = mkpts0.shape[0]
# matching info
alpha = dynamic_alpha(len(correct_mask))
mask = correct_mask
color = np.zeros((n, 3), dtype=np.uint8)
color[mask == 0] = (255, 0, 0)
color[mask == 1] = (0, 255, 0)
n_correct = int(n_correct)
text_precision = [
f'Precision({n_pix}px) ({100 * precision:.1f}%): {n_correct}/{len(mkpts0)}']
# if name is not None:
# text = [name]
# else:
text = []
error_text = [f"Mean Distance: {mean_distance:.2f} px"]
text += error_text
text += text_precision
# color=
# make the figure
figure = make_matching_figure2(img0, img1, mkpts0, mkpts1,
color, text=text, path=path, dpi=150, svg=svg)
def compute_mean_distance(real_H, pred_H, H, W, visualize=False, save_path=None, file_name=None, image1=None,
image2=None, method=None):
corners = np.array([[0, 0, 1],
[W - 1, 0, 1],
[0, H - 1, 1],
[W - 1, H - 1, 1]])
# Compute warped corners using both estimated and real homographies
real_warped_corners = np.dot(corners, np.transpose(real_H))
real_warped_corners = real_warped_corners[:, :2] / real_warped_corners[:, 2:]
warped_corners = np.dot(corners, np.transpose(pred_H))
warped_corners = warped_corners[:, :2] / warped_corners[:, 2:]
# Order corners to form a rectangle
real_warped_corners = order_corners(real_warped_corners)
warped_corners = order_corners(warped_corners)
mean_dist = np.mean(np.linalg.norm(real_warped_corners - warped_corners, axis=1))
if visualize:
draw_homography_comparison(image1, image2, real_warped_corners, warped_corners, mean_dist, file_name, save_path,
method)
return mean_dist
def compute_matching_accuracy(mkpts0, mkpts1, H):
n = mkpts0.shape[0]
if n == 0:
return [0, 0, 0], 0
mkpts0_homogeneous = np.hstack([mkpts0, np.ones((mkpts0.shape[0], 1))])
projected_pts = H @ mkpts0_homogeneous.T
projected_pts /= projected_pts[2, :]
projected_pts = projected_pts[:2, :].T
distances = np.linalg.norm(projected_pts - mkpts1, axis=1)
thresholds = [1, 3, 5]
accuracies = []
for threshold in thresholds:
correct_matches = np.sum(distances <= threshold)
accuracy = correct_matches / mkpts0.shape[0]
accuracies.append(accuracy)
return accuracies, n
def eval_relapose(
matcher,
scene_pairs,
save_figs,
figures_dir=None,
method=None,
print_out=False,
debug=False,
):
scene_pose_auc = {}
precs = {}
precs_no_inlier = {}
for scene_name in scene_pairs.keys():
print(f"scene_name: {scene_name}")
scene_dir = osp.join(figures_dir, scene_name.split(".")[0])
if save_figs and not osp.exists(scene_dir):
os.makedirs(scene_dir)
statis = defaultdict(list)
# continue
groups = scene_pairs[scene_name]
# Eval on pairs
logging.info(f"\nStart evaluation on VisTir \n")
for i, pair in tqdm(enumerate(groups), smoothing=.1, total=len(groups)):
if debug and i > 10:
break
im0 = pair['im0']
im1 = pair['im1']
real_H = pair['H']
match_res = matcher(im0, im1)
matches = match_res['matches']
mkpts0 = match_res['mkpts0']
mkpts1 = match_res['mkpts1']
img0 = match_res['img0']
img1 = match_res['img1']
mconf = match_res['mconf']
if len(mconf) > 0:
conf_min = mconf.min()
conf_max = mconf.max()
mconf = (mconf - conf_min) / (conf_max - conf_min + 1e-5)
color = cm.jet(mconf)
if len(img0.shape) == 2:
H, W = img0.shape
img0 = cv2.cvtColor(img0, cv2.COLOR_GRAY2BGR)
img1 = cv2.cvtColor(img1, cv2.COLOR_GRAY2BGR)
else:
H, W, _ = img0.shape
# Calculate pose errors
img0_name = f"{'vis' if 'visible' in pair['im0'] else 'mmim'}_{osp.basename(pair['im0']).split('.')[0]}"
img1_name = f"{'vis' if 'visible' in pair['im1'] else 'mmim'}_{osp.basename(pair['im1']).split('.')[0]}"
file_name = f"{img0_name}_{img1_name}"
try:
ret_H, inliers = cv2.findHomography(mkpts0, mkpts1, cv2.RANSAC)
mean_dist = compute_mean_distance(real_H, ret_H, H, W, visualize=save_figs,
save_path=scene_dir,
file_name=file_name, image1=img0,
image2=img1, method=method)
except Exception as e:
ret_H = None
if save_figs:
mask0 = compute_mask(real_H, mkpts0, mkpts1, threshold=5)
img0 = cv2.cvtColor(img0, cv2.COLOR_BGR2RGB)
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
fig_path = osp.join(scene_dir, f"{img0_name}_{img1_name}_{method}.jpg")
save_matching_figure2(path=fig_path,
img0=img0,
img1=img1,
mkpts0=mkpts0,
mkpts1=mkpts1,
mean_distance=mean_dist,
correct_mask=mask0,
svg=args.svg
)
if ret_H is None:
statis['mean_dist'].append(np.inf)
statis['failed'].append(i)
statis['matching_accuracy'].append((0, 0, 0))
statis['n'].append(0)
else:
matching_accuracy, n = compute_matching_accuracy(mkpts0, mkpts1, real_H)
statis['mean_dist'].append(mean_dist)
statis['matching_accuracy'].append(matching_accuracy)
statis['n'].append(n)
if print_out:
logging.info(f"#M={len(matches)} R={mean_dist:.3f}, t={matching_accuracy:.3f}")
logging.info(f"Scene: {scene_name} Total samples: {len(groups)} Failed:{len(statis['failed'])}. \n")
mean_dist_all = np.array(statis['mean_dist'])
thresholds = [1, 3, 5, 7, 10, 15, 20]
Homograpy_auc = error_auc(mean_dist_all, thresholds)
logging.info('statis[mean_dist]: %s', statis['mean_dist'])
logging.info('statis[matching_accuracy]: %s', statis['matching_accuracy'])
logging.info('statis[n]: %s', statis['n'])
total_match_nums = np.zeros(3)
count = 0
nums_image = 0
all_accuracies_array = np.zeros(3)
for accuracies, nums_match in zip(statis['matching_accuracy'], statis['n']):
# First parameter: total number of matches / total number of matches
accuracies = np.array(accuracies)
match_nums = accuracies * nums_match
total_match_nums += match_nums
count += nums_match
# Second parameter: total number of matches / total number of images
nums_image += 1
# Third parameter: sum of single image matching accuracy / total number of images
all_accuracies_array += accuracies
# Fourth parameter, total number of matches / total number of images
average_matching_accuracy = total_match_nums / count
average_matching_nums = count / nums_image
average_accuracies_array = all_accuracies_array / nums_image
average_matching_accuracy_nums = total_match_nums / nums_image
filtered_mean_dist = mean_dist_all[np.isfinite(mean_dist_all)]
average_mean_dist = np.mean(filtered_mean_dist)
logging.info(f"\nAverage Mean Dist: {average_mean_dist}\n")
logging.info(f"\nAverage Matching Accuracy: {average_matching_accuracy}\n")
logging.info(f"\nAverage Matching Nums: {average_matching_nums}\n")
logging.info(f"\nAverage Accuracies Array: {average_accuracies_array}\n")
logging.info(f"\nAverage Matching Accuracy Nums: {average_matching_accuracy_nums}\n")
scene_pose_auc[scene_name] = 100 * np.array([Homograpy_auc[f'auc@{t}'] for t in thresholds])
logging.info(f"{scene_name} {Homograpy_auc}")
thresholds = [1, 3, 5, 7, 10, 15, 20]
agg_pose_auc = aggregiate_scenes(scene_pose_auc, thresholds)
print(agg_pose_auc)
agg_precs, agg_precs_no_inlier = aggregate_precisions(precs, precs_no_inlier)
return scene_pose_auc, agg_pose_auc, precs, precs_no_inlier, agg_precs, agg_precs_no_inlier
def aggregate_precisions(precs, precs_no_inlier):
"""Aggregate precision values across cloudy_cloud and cloudy_sunny scenes."""
temp_precs = defaultdict(lambda: defaultdict(list))
temp_precs_no_inlier = defaultdict(lambda: defaultdict(list))
for scene_name, precision_dict in precs.items():
main_scene = scene_name.split("_scene")[0]
for threshold, precision in precision_dict.items():
temp_precs[main_scene][threshold].append(precision)
for scene_name, precision_dict in precs_no_inlier.items():
main_scene = scene_name.split("_scene")[0]
for threshold, precision in precision_dict.items():
temp_precs_no_inlier[main_scene][threshold].append(precision)
agg_precs = {scene: {threshold: np.mean(values) for threshold, values in thresholds_dict.items()}
for scene, thresholds_dict in temp_precs.items()}
agg_precs_no_inlier = {scene: {threshold: np.mean(values) for threshold, values in thresholds_dict.items()}
for scene, thresholds_dict in temp_precs_no_inlier.items()}
return agg_precs, agg_precs_no_inlier
def test_relative_pose_vismmim(
data_root_dir,
method="xoftr",
exp_name="VisMMIM",
ransac_thres=1.5,
print_out=False,
save_dir=None,
save_figs=False,
debug=False,
args=None
):
# save_dir = osp.join(save_dir, time)
if method == "roma":
if args.ckpt is None:
save_ = "roma"
else:
save_ = args.ckpt.split("/")[-1].replace(".ckpt", "")
else:
save_ = args.ckpt.split("/")[-1].replace(".ckpt", "")
path_ = osp.join(save_dir, method, save_)
if args.debug:
path_ = osp.join(save_dir, method, save_, "debug")
if not osp.exists(path_):
os.makedirs(path_)
counter = 0
if hasattr(args, 'thr'):
path = osp.join(path_, f"{exp_name}_thresh_{args.thr}" + "_{}")
else:
path = osp.join(path_, f"{exp_name}" + "_{}")
while osp.exists(path.format(counter)):
counter += 1
exp_dir = path.format(counter)
os.mkdir(exp_dir)
results_file = osp.join(exp_dir, "results.json")
logging.basicConfig(
filename=results_file.replace('.json', '.log'),
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
figures_dir = osp.join(exp_dir, "match_figures")
if save_figs:
os.mkdir(figures_dir)
# Log args
logging.info(f"args: {args}")
# Init paths
multi_model_data_root = data_root_dir / 'Multimodal_Image_Matching_Datasets/'
if args.choose_model == 0:
test_list = data_root_dir / 'test_list.txt'
else:
test_list = data_root_dir / 'test_list_2.txt'
# Load pairs
scene_pairs = load_vis_mmim_pairs_npz(multi_model_data_root, test_list)
# Load method
# matcher = eval(f"load_{method}")(args)
matcher = load_model(method, args)
thresholds = [5, 10, 20]
# Eval
scene_pose_auc, agg_pose_auc, precs, precs_no_inlier, agg_precs, agg_precs_no_inlier = eval_relapose(
matcher,
scene_pairs,
save_figs=save_figs,
figures_dir=figures_dir,
method=method,
print_out=print_out,
debug=debug,
)
# Create result dict
results = OrderedDict({"method": method,
"exp_name": exp_name,
"ransac_thres": ransac_thres,
"auc_thresholds": thresholds})
results.update({key: value for key, value in vars(args).items() if key not in results})
results.update({key: value.tolist() for key, value in agg_pose_auc.items()})
results.update({key: value.tolist() for key, value in scene_pose_auc.items()})
results.update({f"precs_{key}": value for key, value in precs.items()})
results.update({f"precs_no_inlier_{key}": value for key, value in precs_no_inlier.items()})
results.update({f"agg_precs_{key}": value for key, value in agg_precs.items()})
results.update({f"agg_precs_no_inlier_{key}": value for key, value in agg_precs_no_inlier.items()})
logging.info(f"Results: {json.dumps(results, indent=4)}")
# Save to json file
with open(results_file, 'w') as outfile:
json.dump(results, outfile, indent=4)
logging.info(f"Results saved to {results_file}")
if __name__ == '__main__':
def add_common_arguments(parser):
parser.add_argument('--exp_name', type=str, default="VisMMIM")
parser.add_argument('--data_root_dir', type=str,
default="./data/Multi-modality-image-matching-database-metrics-methods/")
parser.add_argument('--save_dir', type=str, default="./results_relative_mmim_homo/")
parser.add_argument('--e_name', type=str, default=None)
parser.add_argument('--ransac_thres', type=float, default=1.5)
parser.add_argument('--print_out', action='store_true')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--save_figs', action='store_true')
parser.add_argument('--choose_model', type=int, default=0, choices=[0, 1], help='0:Medical,1:RemoteSensing')
parser.add_argument('--svg', action='store_true')
def add_method_arguments(parser, method):
if method == "xoftr":
parser.add_argument('--match_threshold', type=float, default=0.3)
parser.add_argument('--fine_threshold', type=float, default=0.1)
parser.add_argument('--ckpt', type=str, default="./weights/weights_xoftr_640.ckpt")
elif method == "loftr":
parser.add_argument('--ckpt', type=str,
default="./weights/minima_loftr.ckpt")
parser.add_argument('--thr', type=float, default=0.2)
elif method == "sp_lg":
parser.add_argument('--ckpt', type=str,
default="./weights/minima_lightglue.pth")
elif method == "roma":
parser.add_argument('--ckpt2', type=str,
default="large")
parser.add_argument('--ckpt', type=str, default='./weights/minima_roma.pth')
else:
raise ValueError(f"Unknown method: {method}")
add_common_arguments(parser)
parser = argparse.ArgumentParser(description='Benchmark Relative Pose')
parser.add_argument('--method', type=str, required=True,
choices=["xoftr", 'sp_lg', 'loftr', 'roma'],
help="Select the method to use: xoftr, sp_lg, loftr, roma")
args, remaining_args = parser.parse_known_args()
add_method_arguments(parser, args.method)
args = parser.parse_args()
print(args)
if args.e_name is not None:
save_dir = osp.join(args.save_dir, args.e_name)
else:
save_dir = args.save_dir
tt = time.time()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
test_relative_pose_vismmim(
Path(args.data_root_dir),
args.method,
args.exp_name,
ransac_thres=args.ransac_thres,
print_out=args.print_out,
save_dir=args.save_dir,
save_figs=args.save_figs,
debug=args.debug,
args=args
)
print(f"Elapsed time: {time.time() - tt}")