-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtest_relative_pose_mega_1500.py
487 lines (404 loc) · 18.5 KB
/
test_relative_pose_mega_1500.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import argparse
import json
import logging
import numpy as np
import os
import os.path as osp
import time
import warnings
from collections import defaultdict, OrderedDict
from pathlib import Path
from tqdm import tqdm
from src.utils.load_model import load_model
from src.utils.metrics import estimate_pose, relative_pose_error, error_auc, symmetric_epipolar_distance_numpy, \
epidist_prec
from src.utils.plotting import dynamic_alpha, error_colormap, make_matching_figure
def load_vis_pairs_npz(npz_root, npz_list, data_root):
"""Load information for scene and image pairs from npz files.
Args:
npz_root: Directory path for npz files
npz_list: File containing the names of the npz files to be used
"""
with open(npz_list, 'r') as f:
npz_names = [name.split()[0] for name in f.readlines()]
print(f"Parse {len(npz_names)} npz from {npz_list}.")
total_pairs = 0
scene_pairs = {}
pairs = []
for name in npz_names:
print(f"Loading {name}")
scene_info = np.load(f"{npz_root}/{name}.npz", allow_pickle=True)
# Collect pairs
for pair_info in scene_info['pair_infos']:
total_pairs += 1
(id0, id1), overlap_score, central_matches = pair_info
im0 = scene_info['image_paths'][id0]
im0_original = os.path.join(data_root, im0)
im1 = scene_info['image_paths'][id1]
im1_original = os.path.join(data_root, im1)
K0 = scene_info['intrinsics'][id0].astype(np.float32)
K1 = scene_info['intrinsics'][id1].astype(np.float32)
# dist0 = np.array(scene_info['distortion_coefs'][id0][0], dtype=float)
# dist1 = np.array(scene_info['distortion_coefs'][id1][1], dtype=float)
dist0 = np.zeros(8, dtype=float)
dist1 = np.zeros(8, dtype=float)
# Compute relative pose
T0 = scene_info['poses'][id0]
T1 = scene_info['poses'][id1]
T_0to1 = np.matmul(T1, np.linalg.inv(T0))
T_1to0 = np.linalg.inv(T_0to1)
pairs.append({'im0': im0_original, 'im1': im1_original, 'dist0': dist0, 'dist1': dist1,
'K0': K0, 'K1': K1, 'T_0to1': T_0to1})
scene_pairs['megadepth'] = pairs
print(f"Loaded {total_pairs} pairs.")
return scene_pairs
def save_matching_figure(path, img0, img1, mkpts0, mkpts1, inlier_mask, T_0to1, K0, K1, t_err=None, R_err=None,
name=None, conf_thr=5e-4):
""" Make and save matching figures
"""
Tx = np.cross(np.eye(3), T_0to1[:3, 3])
E_mat = Tx @ T_0to1[:3, :3]
mkpts0_inliers = mkpts0[inlier_mask]
mkpts1_inliers = mkpts1[inlier_mask]
color = None
if inlier_mask is not None and len(inlier_mask) != 0:
epi_errs = symmetric_epipolar_distance_numpy(mkpts0_inliers, mkpts1_inliers, E_mat, K0, K1)
correct_mask = epi_errs < conf_thr
precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0
n_correct = np.sum(correct_mask)
# matching info
alpha = dynamic_alpha(len(correct_mask))
color = error_colormap(epi_errs, conf_thr, alpha=alpha)
text_precision = [
f'Precision({conf_thr:.2e}) ({100 * precision:.1f}%): {n_correct}/{len(mkpts0_inliers)}']
else:
text_precision = [
f'No inliers after ransac']
return
if name is not None:
text = [name]
else:
text = []
if t_err is not None and R_err is not None:
error_text = [f"err_t: {t_err:.2f} °", f"err_R: {R_err:.2f} °"]
text += error_text
text += text_precision
# make the figure
figure = make_matching_figure(img0, img1, mkpts0_inliers, mkpts1_inliers,
color, text=text, path=path, dpi=150)
def save_matching_figure2(path, img0, img1, mkpts0, mkpts1, inlier_mask, T_0to1, K0, K1, t_err=None, R_err=None,
name=None, conf_thr=5e-4):
""" Make and save matching figures
"""
Tx = np.cross(np.eye(3), T_0to1[:3, 3])
E_mat = Tx @ T_0to1[:3, :3]
mkpts0_inliers = mkpts0
mkpts1_inliers = mkpts1
epi_errs = symmetric_epipolar_distance_numpy(mkpts0_inliers, mkpts1_inliers, E_mat, K0, K1)
correct_mask = epi_errs < conf_thr
precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0
n_correct = np.sum(correct_mask)
# matching info
alpha = dynamic_alpha(len(correct_mask))
color = error_colormap(epi_errs, conf_thr, alpha=alpha)
text_precision = [
f'Precision({conf_thr:.2e}) ({100 * precision:.1f}%): {n_correct}/{len(mkpts0_inliers)}']
if name is not None:
text = [name]
else:
text = []
if t_err is not None and R_err is not None:
error_text = [f"err_t: {t_err:.2f} °", f"err_R: {R_err:.2f} °"]
text += error_text
text += text_precision
# make the figure
figure = make_matching_figure(img0, img1, mkpts0_inliers, mkpts1_inliers,
color, text=text, path=path, dpi=150)
def aggregiate_scenes(scene_pose_auc, thresholds):
"""Averages the auc results for cloudy_cloud and cloudy_sunny scenes
"""
temp_pose_auc = {}
for npz_name in scene_pose_auc.keys():
scene_name = 'megadepth'
temp_pose_auc[scene_name] = [np.zeros(len(thresholds), dtype=np.float32), 0] # [sum, total_number]
for npz_name in scene_pose_auc.keys():
scene_name = 'megadepth'
temp_pose_auc[scene_name][0] += scene_pose_auc[npz_name]
temp_pose_auc[scene_name][1] += 1
agg_pose_auc = {}
for scene_name in temp_pose_auc.keys():
agg_pose_auc[scene_name] = temp_pose_auc[scene_name][0] / temp_pose_auc[scene_name][1]
return agg_pose_auc
def calculate_epi_errs(mkpts0, mkpts1, inlier_mask, T_0to1, K0, K1):
Tx = np.cross(np.eye(3), T_0to1[:3, 3])
E_mat = Tx @ T_0to1[:3, :3]
mkpts0_inliers = mkpts0[inlier_mask]
mkpts1_inliers = mkpts1[inlier_mask]
if inlier_mask is not None and len(inlier_mask) != 0:
epi_errs = symmetric_epipolar_distance_numpy(mkpts0_inliers, mkpts1_inliers, E_mat, K0, K1)
else:
epi_errs = np.inf
return epi_errs
def calculate_epi_errs_no_inlier(mkpts0, mkpts1, inlier_mask, T_0to1, K0, K1):
Tx = np.cross(np.eye(3), T_0to1[:3, 3])
E_mat = Tx @ T_0to1[:3, :3]
mkpts0_inliers = mkpts0
mkpts1_inliers = mkpts1
epi_errs = symmetric_epipolar_distance_numpy(mkpts0_inliers, mkpts1_inliers, E_mat, K0, K1)
return epi_errs
def eval_relapose(
matcher,
data_root,
scene_pairs,
ransac_thres,
thresholds,
save_figs,
figures_dir=None,
method=None,
print_out=False,
debug=False,
):
scene_pose_auc = {}
precs = {}
precs_no_inlier = {}
for scene_name in scene_pairs.keys():
scene_dir = osp.join(figures_dir, scene_name.split(".")[0])
if save_figs and not osp.exists(scene_dir):
os.makedirs(scene_dir)
pairs = scene_pairs[scene_name]
statis = defaultdict(list)
np.set_printoptions(precision=2)
# Eval on pairs
logging.info(f"\nStart evaluation on Megadepth 1500 \n")
for i, pair in tqdm(enumerate(pairs), smoothing=.1, total=len(pairs)):
if debug and i > 10:
break
T_0to1 = pair['T_0to1']
im0 = pair['im0']
im1 = pair['im1']
match_res = matcher(im0, im1, pair['K0'], pair['K1'], pair['dist0'], pair['dist1'])
matches = match_res['matches']
new_K0 = match_res['new_K0']
new_K1 = match_res['new_K1']
mkpts0 = match_res['mkpts0']
mkpts1 = match_res['mkpts1']
# Calculate pose errors
ret = estimate_pose(
mkpts0, mkpts1, new_K0, new_K1, thresh=ransac_thres
)
if ret is None:
R, t, inliers = None, None, None
t_err, R_err = np.inf, np.inf
epi_errs = np.array([]).astype(np.float32)
epi_errs_no_inlier = np.array([]).astype(np.float32)
statis['failed'].append(i)
statis['R_errs'].append(R_err)
statis['t_errs'].append(t_err)
statis['epi_errs'].append(epi_errs)
statis['epi_errs_no_inlier'].append(epi_errs_no_inlier)
statis['inliers'].append(np.array([]).astype(np.bool_))
else:
R, t, inliers = ret
t_err, R_err = relative_pose_error(T_0to1, R, t)
epi_errs = calculate_epi_errs(mkpts0, mkpts1, inliers, T_0to1, new_K0, new_K1)
epi_errs_no_inlier = calculate_epi_errs_no_inlier(mkpts0, mkpts1, inliers, T_0to1, new_K0, new_K1)
statis['epi_errs'].append(epi_errs)
statis['epi_errs_no_inlier'].append(epi_errs_no_inlier)
statis['R_errs'].append(R_err)
statis['t_errs'].append(t_err)
statis['inliers'].append(inliers.sum() / len(mkpts0))
if print_out:
logging.info(f"#M={len(matches)} R={R_err:.3f}, t={t_err:.3f}")
if save_figs:
img0_name = f"fig1_{osp.basename(pair['im0']).split('.')[0]}"
img1_name = f"fig2_{osp.basename(pair['im1']).split('.')[0]}"
fig_path = osp.join(scene_dir, f"{img0_name}_{img1_name}_after_ransac.jpg")
save_matching_figure(path=fig_path,
img0=match_res['img0_undistorted'] if 'img0_undistorted' in match_res.keys() else
match_res['img0'],
img1=match_res['img1_undistorted'] if 'img1_undistorted' in match_res.keys() else
match_res['img1'],
mkpts0=mkpts0,
mkpts1=mkpts1,
inlier_mask=inliers,
T_0to1=T_0to1,
K0=new_K0,
K1=new_K1,
t_err=t_err,
R_err=R_err,
name=method
)
fig_path = osp.join(scene_dir, f"{img0_name}_{img1_name}_before_ransac.jpg")
save_matching_figure2(path=fig_path,
img0=match_res['img0_undistorted'] if 'img0_undistorted' in match_res.keys() else
match_res['img0'],
img1=match_res['img1_undistorted'] if 'img1_undistorted' in match_res.keys() else
match_res['img1'],
mkpts0=mkpts0,
mkpts1=mkpts1,
inlier_mask=inliers,
T_0to1=T_0to1,
K0=new_K0,
K1=new_K1,
t_err=t_err,
R_err=R_err,
name=method
)
logging.info(f"Scene: {scene_name} Total samples: {len(pairs)} Failed:{len(statis['failed'])}. \n")
pose_errors = np.max(np.stack([statis['R_errs'], statis['t_errs']]), axis=0)
pose_auc = error_auc(pose_errors, thresholds) # (auc@5, auc@10, auc@20)
epi_err_thr = 5e-4
dist_thresholds = [epi_err_thr]
precs[scene_name] = epidist_prec(np.array(statis['epi_errs'], dtype=object), dist_thresholds,
True, True) # (prec@err_thr)
precs_no_inlier[scene_name] = epidist_prec(np.array(statis['epi_errs_no_inlier'], dtype=object),
dist_thresholds, True, False)
scene_pose_auc[scene_name] = 100 * np.array([pose_auc[f'auc@{t}'] for t in thresholds])
logging.info(f"{scene_name} {pose_auc} {precs} {precs_no_inlier}")
agg_pose_auc = aggregiate_scenes(scene_pose_auc, thresholds)
agg_precs = {key: np.mean([precs[scene][key] for scene in precs.keys()]) for key in
precs[list(precs.keys())[0]].keys()}
agg_precs_no_inlier = {key: np.mean([precs_no_inlier[scene][key] for scene in precs_no_inlier.keys()]) for key in
precs_no_inlier[list(precs_no_inlier.keys())[0]].keys()}
return scene_pose_auc, agg_pose_auc, precs, precs_no_inlier, agg_precs, agg_precs_no_inlier
def test_relative_pose_vis(
data_root_dir,
method="xoftr",
exp_name="megadepth",
ransac_thres=1.5,
print_out=False,
save_dir=None,
save_figs=False,
debug=False,
args=None
):
# save_dir = osp.join(save_dir, time)
if method == "roma":
if args.ckpt is None:
save_ = "roma"
else:
save_ = args.ckpt.split("/")[-1].replace(".ckpt", "")
else:
save_ = args.ckpt.split("/")[-1].replace(".ckpt", "")
path_ = osp.join(save_dir, method, save_)
if args.debug:
path_ = osp.join(save_dir, method, save_, "debug")
if not osp.exists(path_):
os.makedirs(path_)
counter = 0
if hasattr(args, 'thr'):
path = osp.join(path_, f"{exp_name}_thresh_{args.thr}" + "_{}")
else:
path = osp.join(path_, f"{exp_name}" + "_{}")
while osp.exists(path.format(counter)):
counter += 1
exp_dir = path.format(counter)
os.mkdir(exp_dir)
results_file = osp.join(exp_dir, "results.json")
logging.basicConfig(
filename=results_file.replace('.json', '.log'),
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
figures_dir = osp.join(exp_dir, "match_figures")
if save_figs:
os.mkdir(figures_dir)
# Log args
logging.info(f"args: {args}")
# Init paths
data_root_dir = './data/megadepth/test/'
npz_root = "./third_party/LoFTR/assets/megadepth_test_1500_scene_info"
npz_list = "./third_party/LoFTR/assets/megadepth_test_1500_scene_info/megadepth_test_1500.txt"
data_root = data_root_dir
# Load pairs
scene_pairs = load_vis_pairs_npz(npz_root, npz_list, data_root)
# Load method
# matcher = eval(f"load_{method}")(args)
matcher = load_model(method, args, test_orginal_megadepth=True)
thresholds = [5, 10, 20]
# Eval
scene_pose_auc, agg_pose_auc, precs, precs_no_inlier, agg_precs, agg_precs_no_inlier = eval_relapose(
matcher,
data_root,
scene_pairs,
ransac_thres=ransac_thres,
thresholds=thresholds,
save_figs=save_figs,
figures_dir=figures_dir,
method=method,
print_out=print_out,
debug=debug,
)
# Create result dict
results = OrderedDict({"method": method,
"exp_name": exp_name,
"ransac_thres": ransac_thres,
"auc_thresholds": thresholds})
results.update({key: value for key, value in vars(args).items() if key not in results})
results.update({key: value.tolist() for key, value in agg_pose_auc.items()})
results.update({key: value.tolist() for key, value in scene_pose_auc.items()})
results.update({f"precs_{key}": value for key, value in precs.items()})
results.update({f"precs_no_inlier_{key}": value for key, value in precs_no_inlier.items()})
results.update({f"agg_precs_{key}": value for key, value in agg_precs.items()})
results.update({f"agg_precs_no_inlier_{key}": value for key, value in agg_precs_no_inlier.items()})
logging.info(f"Results: {json.dumps(results, indent=4)}")
# Save to json file
with open(results_file, 'w') as outfile:
json.dump(results, outfile, indent=4)
logging.info(f"Results saved to {results_file}")
if __name__ == '__main__':
def add_common_arguments(parser):
parser.add_argument('--exp_name', type=str, default="MegaDepth")
parser.add_argument('--data_root_dir', type=str, default="./data/megadepth/")
parser.add_argument('--save_dir', type=str, default="./results_relative_pose_megadepth/")
parser.add_argument('--e_name', type=str, default=None)
parser.add_argument('--ransac_thres', type=float, default=0.5)
parser.add_argument('--print_out', action='store_true')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--save_figs', action='store_true')
def add_method_arguments(parser, method):
if method == "xoftr":
parser.add_argument('--match_threshold', type=float, default=0.3)
parser.add_argument('--fine_threshold', type=float, default=0.1)
parser.add_argument('--ckpt', type=str, default="./weights/weights_xoftr_640.ckpt")
elif method == "loftr":
parser.add_argument('--ckpt', type=str,
default="./weights/minima_loftr.ckpt")
parser.add_argument('--thr', type=float, default=0.2)
elif method == "sp_lg":
parser.add_argument('--ckpt', type=str,
default="./weights/minima_lightglue.pth")
elif method == "roma":
parser.add_argument('--ckpt2', type=str,
default="large")
parser.add_argument('--ckpt', type=str, default='./weights/minima_roma.pth')
else:
raise ValueError(f"Unknown method: {method}")
add_common_arguments(parser)
parser = argparse.ArgumentParser(description='Benchmark Relative Pose')
parser.add_argument('--method', type=str, required=True,
choices=["xoftr", 'sp_lg', 'loftr', 'roma'],
help="Select the method to use: xoftr, sp_lg, loftr, roma")
args, remaining_args = parser.parse_known_args()
add_method_arguments(parser, args.method)
args = parser.parse_args()
print(args)
if args.e_name is not None:
save_dir = osp.join(args.save_dir, args.e_name)
else:
save_dir = args.save_dir
tt = time.time()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
test_relative_pose_vis(
Path(args.data_root_dir),
args.method,
args.exp_name,
ransac_thres=args.ransac_thres,
print_out=args.print_out,
save_dir=args.save_dir,
save_figs=args.save_figs,
debug=args.debug,
args=args
)
print(f"Elapsed time: {time.time() - tt}")