-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
40 lines (27 loc) · 1.03 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from os.path import join
from torch import save, load
from torchvision import models
def save_weight(model, epoch, save_dir, file):
save({'state_dict': model.state_dict(),
'epoch': epoch},
join(save_dir, file))
def load_weight(model, file, show=True):
checkpoints = load(file)
if show: print("Model at epoch:", checkpoints["epoch"])
model.load_state_dict(checkpoints["state_dict"])
return model
def resume_train(model, weight):
checkpoints = load(weight)
epoch = checkpoints["epoch"]
model.load_state_dict(checkpoints["state_dict"])
return model, epoch
def get_pretrained(name):
attrs = dir(models)
check = lambda x : name + "_weights" in x.lower()
# a = list(filter(check, attrs))
weight_class = [attr for attr in attrs if check(attr)][0]
weight = getattr(models, weight_class).IMAGENET1K_V1
return weight
def get_model(name, pretrained):
model = getattr(models, name)(weights = get_pretrained(name) if pretrained else None)
return model