-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathPCA.h
43 lines (33 loc) · 1.37 KB
/
PCA.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
/* Copyright (C) 2016 Kristian Sloth Lauszus. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Kristian Sloth Lauszus
Web : http://www.lauszus.com
e-mail : [email protected]
*/
#ifndef __pca_h__
#define __pca_h__
#include <Eigen/Dense> // http://eigen.tuxfamily.org
using namespace Eigen;
class PCA {
public:
/**
* Computes the Eigenvectors of the images using PCA.
* @param images Each images is represented as a column vector.
* @param numComponents Number of singular values used. If this is set to -1, a cumulative energy threshold of 90 % is used.
* @return Returns the number of components used.
*/
int32_t compute(const MatrixXi &images, int32_t numComponents = -1);
protected:
MatrixXf U; // Eigenvectors
VectorXf mu; // Mean along each row
private:
const float cumulativeEnergyThreshold = .9f; // Determine the number of principal components required to model 90 % of data variance
};
#endif