add hyperkaehler lattices (#1313) #1
Annotations
1 warning
../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2176 docstrings not included in the manual:
LocalGenusQuad
isirreducible_easy
rescale! :: Tuple{FlintPuiseuxSeriesElem}
rescale! :: Tuple{ZZLaurentSeriesRingElem}
hermite_constant :: Union{Tuple{Int64}, Tuple{Int64, Any}}
dual_of_frobenius :: Tuple{Any}
discriminant_sign :: Tuple{NumField}
dim_radical :: Tuple{Hecke.QuadSpaceCls}
rres :: Union{Tuple{T}, Tuple{S}, Tuple{PolyRingElem{T}, PolyRingElem{T}}} where {S<:Union{Integer, ZZRingElem}, T<:ResElem{S}}
rres :: Tuple{ZZPolyRingElem, ZZPolyRingElem}
ideal :: Union{Tuple{U}, Tuple{S}, Tuple{T}, Tuple{Hecke.NfRelOrd{T, S, U}, Hecke.NfRelOrdElem{T, U}}} where {T, S, U}
ideal :: Tuple{Hecke.AlgAssRelOrd{nf_elem, Hecke.NfAbsOrdFracIdl{AnticNumberField, nf_elem}}, NfAbsOrdIdl}
ideal :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AbsAlgAss{S}, Hecke.AlgAssRelOrd{S, T, U}, Hecke.PMat{S, T}}} where {S<:NumFieldElem, T, U}
ideal :: Tuple{Hecke.AbsAlgAss, MatElem}
ideal :: Union{Tuple{U}, Tuple{S}, Tuple{T}, Tuple{Hecke.NfRelOrd{T, S, U}, Hecke.PMat{T, S}}} where {T, S, U}
ideal :: Union{Tuple{T}, Tuple{S}, Tuple{Hecke.AbsAlgAss{S}, Hecke.PMat{S, T}}} where {S<:NumFieldElem, T}
ideal :: Union{Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssAbsOrd{S, T}, T, Symbol}} where {S, T}
ideal :: Union{Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssAbsOrd{S, T}, T}} where {S, T}
ideal :: Tuple{Hecke.AbsAlgAss, Hecke.AbsAlgAssElem}
ideal :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssRelOrd{S, T, U}, Hecke.AbsAlgAssElem{S}}} where {S, T, U}
ideal :: Union{Tuple{U}, Tuple{S}, Tuple{T}, Tuple{Hecke.NfRelOrd{T, S, U}, U, U, S, S}} where {T, S, U}
ideal :: Tuple{NfAbsOrd, Vector{<:NfAbsOrdElem}}
ideal :: Tuple{Hecke.AbsAlgAss{QQFieldElem}, Hecke.AlgAssAbsOrd, FakeFmpqMat}
ideal :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssRelOrd{S, T, U}, Hecke.AbsAlgAssElem{S}, Symbol}} where {S, T, U}
ideal :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssRelOrd{S, T, U}, T}} where {S, T, U}
ideal :: Tuple{Hecke.AbsAlgAss, Hecke.AbsAlgAssElem, Symbol}
ideal :: Union{Tuple{U}, Tuple{S}, Tuple{T}, Tuple{Hecke.NfRelOrd{T, S, U}, S}} where {T, S, U}
ideal :: Tuple{Hecke.AbsAlgAss{QQFieldElem}, FakeFmpqMat}
ideal :: Tuple{NfAbsOrd, ZZMatrix}
ideal :: Union{Tuple{S}, Tuple{T}, Tuple{Hecke.NfRelOrd{T, S}, AbstractAlgebra.Generic.Mat{T}}} where {T, S}
factor_distinct_deg :: Tuple{fqPolyRepPolyRingElem}
factor_distinct_deg :: Tuple{ZZModPolyRingElem}
factor_distinct_deg :: Tuple{zzModPolyRingElem}
factor_distinct_deg :: Tuple{fpPolyRingElem}
factor_distinct_deg :: Tuple{FpPolyRingElem}
factor_distinct_deg :: Tuple{FqPolyRingElem}
factor_distinct_deg :: Tuple{FqPolyRepPolyRingElem}
isbass
fqPolyRepMatrix
sign :: Tuple{qqbar}
sign :: Tuple{QQFieldElem}
sign :: Tuple{ZZRingElem}
sign :: Tuple{ca}
airy_bi_prime :: Union{Tuple{RealFieldElem}, Tuple{RealFieldElem, Int64}}
airy_bi_prime :: Tuple{acb}
airy_bi_prime :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}}
airy_bi_prime :: Tuple{arb}
asinpi :: Tuple{qqbar}
rational_reconstruction2 :: Tuple{AbstractAlgebra.Generic.Mat{nf_elem}, ZZRingElem}
atan :: Tuple{ca}
quotient_order :: Tuple{Hecke.AlgAssAbsOrd, Hecke.AlgAssAbsOrdIdl}
submodules :: Union{Tuple{Hecke.ModAlgAss{S, T, V}}, Tuple{V}, Tuple{T}, Tuple{S}} where {S, T, V}
submodules :: Tuple{ZpnGModule}
submodules :: Union{Tuple{V}, Tuple{T}, Tuple{S}, Tuple{Hecke.ModAlgAss{S, T, V}, Int64}} where {S, T, V}
differential :: Tuple{AbstractAlgebra.Generic.FunctionFieldElem}
ismaximal
numerator :: Tuple{qqbar}
numerator :: Tuple{ZZRingElem}
numerator :: Tuple{nf_elem}
local_jordan_decompositions :: Tuple{Any, Any}
isright_ideal
left_kernel :: Tuple{ZZMatrix}
height_pairing :: Union{Tuple{T}, Tuple{EllCrvPt{T}, EllCrvPt{T}}, Tuple{EllCrvPt{T}, EllCrvPt{T}, Int64}} where T<:Union{QQFieldElem, nf_elem}
isprimary
^ :: Tuple{TorQuadModuleMor, I
|
The logs for this run have expired and are no longer available.
Loading