-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmain_without_fitlog.py
205 lines (175 loc) · 8.55 KB
/
main_without_fitlog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import torch.nn as nn
# print(1111111111)
# from pathes import *
from load_data import load_ontonotes4ner,equip_chinese_ner_with_skip,load_yangjie_rich_pretrain_word_list,\
load_resume_ner,load_weibo_ner,load_weibo_ner_old
from fastNLP.embeddings import StaticEmbedding
from models import LatticeLSTM_SeqLabel,LSTM_SeqLabel,LatticeLSTM_SeqLabel_V1
from fastNLP import CrossEntropyLoss,SpanFPreRecMetric,Trainer,AccuracyMetric,LossInForward
import torch.optim as optim
import argparse
import torch
import sys
from utils_ import LatticeLexiconPadder,SpanFPreRecMetric_YJ
from fastNLP import Tester
# import fitlog
# from fastNLP.core.callback import FitlogCallback
from utils import set_seed
import os
from fastNLP import LRScheduler
from torch.optim.lr_scheduler import LambdaLR
parser = argparse.ArgumentParser()
parser.add_argument('--device',default='cuda:1')
parser.add_argument('--debug',default=False)
parser.add_argument('--norm_embed',default=False)
parser.add_argument('--batch',default=1)
parser.add_argument('--test_batch',default=1024)
parser.add_argument('--optim',default='sgd',help='adam|sgd')
parser.add_argument('--lr',default=0.045)
parser.add_argument('--model',default='lattice',help='lattice|lstm')
parser.add_argument('--skip_before_head',default=False)#in paper it's false
parser.add_argument('--hidden',default=113)
parser.add_argument('--momentum',default=0)
parser.add_argument('--bi',default=True)
parser.add_argument('--dataset',default='weibo',help='resume|ontonote|weibo|msra')
parser.add_argument('--use_bigram',default=True)
parser.add_argument('--embed_dropout',default=0.5)
parser.add_argument('--gaz_dropout',default=-1)
parser.add_argument('--output_dropout',default=0.5)
parser.add_argument('--epoch',default=100)
parser.add_argument('--seed',default=100)
args = parser.parse_args()
set_seed(args.seed)
fit_msg_list = [args.model,'bi' if args.bi else 'uni',str(args.batch)]
if args.model == 'lattice':
fit_msg_list.append(str(args.skip_before_head))
fit_msg = ' '.join(fit_msg_list)
# fitlog.commit(__file__,fit_msg=fit_msg)
device = torch.device(args.device)
for k,v in args.__dict__.items():
print(k,v)
refresh_data = False
from pathes import *
# ontonote4ner_cn_path = 0
# yangjie_rich_pretrain_unigram_path = 0
# yangjie_rich_pretrain_bigram_path = 0
# resume_ner_path = 0
# weibo_ner_path = 0
if args.dataset == 'ontonote':
datasets,vocabs,embeddings = load_ontonotes4ner(ontonote4ner_cn_path,yangjie_rich_pretrain_unigram_path,yangjie_rich_pretrain_bigram_path,
_refresh=refresh_data,index_token=False,
)
elif args.dataset == 'resume':
datasets,vocabs,embeddings = load_resume_ner(resume_ner_path,yangjie_rich_pretrain_unigram_path,yangjie_rich_pretrain_bigram_path,
_refresh=refresh_data,index_token=False,
)
elif args.dataset == 'weibo':
datasets,vocabs,embeddings = load_weibo_ner(weibo_ner_path,yangjie_rich_pretrain_unigram_path,yangjie_rich_pretrain_bigram_path,
_refresh=refresh_data,index_token=False,
)
elif args.dataset == 'weibo_old':
datasets,vocabs,embeddings = load_weibo_ner_old(weibo_ner_old_path,yangjie_rich_pretrain_unigram_path,yangjie_rich_pretrain_bigram_path,
_refresh=refresh_data,index_token=False,
)
if args.dataset == 'ontonote':
args.batch = 10
args.lr = 0.045
elif args.dataset == 'resume':
args.batch = 1
args.lr = 0.015
elif args.dataset == 'weibo':
args.batch = 10
args.gaz_dropout = 0.1
args.embed_dropout = 0.1
args.output_dropout = 0.1
elif args.dataset == 'weibo_old':
args.embed_dropout = 0.1
args.output_dropout = 0.1
if args.gaz_dropout < 0:
args.gaz_dropout = args.embed_dropout
# fitlog.add_hyper(args)
w_list = load_yangjie_rich_pretrain_word_list(yangjie_rich_pretrain_word_path,
_refresh=refresh_data)
cache_name = os.path.join('cache',args.dataset+'_lattice')
datasets,vocabs,embeddings = equip_chinese_ner_with_skip(datasets,vocabs,embeddings,w_list,yangjie_rich_pretrain_word_path,
_refresh=refresh_data,_cache_fp=cache_name)
print(datasets['train'][0])
print('vocab info:')
for k,v in vocabs.items():
print('{}:{}'.format(k,len(v)))
for k,v in datasets.items():
if args.model == 'lattice':
v.set_ignore_type('skips_l2r_word','skips_l2r_source','skips_r2l_word', 'skips_r2l_source')
if args.skip_before_head:
v.set_padder('skips_l2r_word',LatticeLexiconPadder())
v.set_padder('skips_l2r_source',LatticeLexiconPadder())
v.set_padder('skips_r2l_word',LatticeLexiconPadder())
v.set_padder('skips_r2l_source',LatticeLexiconPadder(pad_val_dynamic=True))
else:
v.set_padder('skips_l2r_word',LatticeLexiconPadder())
v.set_padder('skips_r2l_word', LatticeLexiconPadder())
v.set_padder('skips_l2r_source', LatticeLexiconPadder(-1))
v.set_padder('skips_r2l_source', LatticeLexiconPadder(pad_val_dynamic=True,dynamic_offset=1))
if args.bi:
v.set_input('chars','bigrams','seq_len',
'skips_l2r_word','skips_l2r_source','lexicon_count',
'skips_r2l_word', 'skips_r2l_source','lexicon_count_back',
'target',
use_1st_ins_infer_dim_type=True)
else:
v.set_input('chars','bigrams','seq_len',
'skips_l2r_word','skips_l2r_source','lexicon_count',
'target',
use_1st_ins_infer_dim_type=True)
v.set_target('target','seq_len')
v['target'].set_pad_val(0)
elif args.model == 'lstm':
v.set_ignore_type('skips_l2r_word','skips_l2r_source')
v.set_padder('skips_l2r_word',LatticeLexiconPadder())
v.set_padder('skips_l2r_source',LatticeLexiconPadder())
v.set_input('chars','bigrams','seq_len','target',
use_1st_ins_infer_dim_type=True)
v.set_target('target','seq_len')
v['target'].set_pad_val(0)
print(datasets['dev']['skips_l2r_word'][100])
if args.model =='lattice':
model = LatticeLSTM_SeqLabel_V1(embeddings['char'],embeddings['bigram'],embeddings['word'],
hidden_size=args.hidden,label_size=len(vocabs['label']),device=args.device,
embed_dropout=args.embed_dropout,output_dropout=args.output_dropout,
skip_batch_first=True,bidirectional=args.bi,debug=args.debug,
skip_before_head=args.skip_before_head,use_bigram=args.use_bigram,
gaz_dropout=args.gaz_dropout
)
elif args.model == 'lstm':
model = LSTM_SeqLabel(embeddings['char'],embeddings['bigram'],embeddings['word'],
hidden_size=args.hidden,label_size=len(vocabs['label']),device=args.device,
bidirectional=args.bi,
embed_dropout=args.embed_dropout,output_dropout=args.output_dropout,
use_bigram=args.use_bigram)
loss = LossInForward()
encoding_type = 'bmeso'
if args.dataset == 'weibo':
encoding_type = 'bio'
f1_metric = SpanFPreRecMetric(vocabs['label'],pred='pred',target='target',seq_len='seq_len',encoding_type=encoding_type)
acc_metric = AccuracyMetric(pred='pred',target='target',seq_len='seq_len')
metrics = [f1_metric,acc_metric]
if args.optim == 'adam':
optimizer = optim.Adam(model.parameters(),lr=args.lr)
elif args.optim == 'sgd':
optimizer = optim.SGD(model.parameters(),lr=args.lr,momentum=args.momentum)
callbacks = [
# FitlogCallback({'test':datasets['test'],'train':datasets['train']}),
LRScheduler(lr_scheduler=LambdaLR(optimizer, lambda ep: 1 / (1 + 0.03)**ep))
]
print('label_vocab:{}\n{}'.format(len(vocabs['label']),vocabs['label'].idx2word))
trainer = Trainer(datasets['train'],model,
optimizer=optimizer,
loss=loss,
metrics=metrics,
dev_data=datasets['dev'],
device=device,
batch_size=args.batch,
n_epochs=args.epoch,
dev_batch_size=args.test_batch,
callbacks=callbacks)
trainer.train()