-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathnowtrain.py
197 lines (151 loc) · 6.83 KB
/
nowtrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import cv2
cv2.setNumThreads(0)
import torch
from torch.optim.lr_scheduler import MultiStepLR
from torch.utils.data import DataLoader
import numpy as np
import random
import sys
import logging
from src.crowd_counting import CrowdCounter
from src import network
from src.timer import Timer
from src import utils
from src import density_gen
from src.datasets import datasets, CreateDataLoader
from src.train_options import TrainOptions
import torch.nn as nn
import src.ssim as ssim
try:
from termcolor import cprint
except ImportError:
cprint = None
def log_print(text, opt):
opt.logger.info(text)
logging.basicConfig(level=logging.INFO,
format="%(asctime)s %(message)s",
datefmt="%d-%H:%M",
handlers=[
logging.StreamHandler()
])
if __name__ == '__main__':
rand_seed = 64678
if rand_seed is not None:
np.random.seed(rand_seed)
torch.manual_seed(rand_seed)
torch.cuda.manual_seed(rand_seed)
torch.cuda.manual_seed_all(rand_seed)
random.seed(rand_seed)
train_opt = TrainOptions()
opt = train_opt.parse()
vis_exp = train_opt.vis_exp
data_loader_train = CreateDataLoader(opt, phase='train')
loss_scale = opt.loss_scale
momentum = 0.99
# optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, net.parameters()), lr=lr, momentum=momentum, weight_decay=0.0005)
# optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, net.parameters()), lr=lr)
optimizer = lambda x: torch.optim.Adam(filter(lambda p: p.requires_grad, x.parameters()), lr=opt.lr)
#load net and initialize it
net = CrowdCounter(optimizer=optimizer, opt=opt)
scheduler = None
# scheduler = MultiStepLR(net.optimizer, milestones=range(opt.epochs)[::300][1:], gamma=0.1)
# scheduler = MultiStepLR(net.optimizer, milestones=[1], gamma=0.1)
net.train()
#training configuration
start_step = 0
end_step = opt.epochs
disp_interval = opt.disp_interval
save_interval = opt.save_interval
# training
train_loss = 0
step_cnt = 1
re_cnt = False
t = Timer()
t.tic()
print("Start training")
for epoch in range(start_step, end_step+1):
step = -1
train_loss = 0
outer_timer = Timer()
outer_timer.tic()
'''regenerate crop patches'''
data_loader_train.shuffle_list()
load_timer = Timer()
load_time = 0.0
iter_timer = Timer()
iter_time = 0.0
for i, datas in enumerate(\
DataLoader(data_loader_train, batch_size=opt.batch_size, \
shuffle=True, num_workers=4,drop_last=True)):
step_cnt += 1
if i != 0:
load_time += load_timer.toc(average=False)
iter_timer.tic()
img_data = datas[0]
gt_data = datas[1]
raw_patch = datas[2]
gt_count = datas[3]
fnames = [data_loader_train.query_fname(i) for i in datas[4]]
batch_size = len(fnames)
step = step + 1
net.train()
density_map = net(img_data, gt_data)
net.backward(loss_scale)
loss_value = float(net.loss.item())
train_loss += loss_value
if step % disp_interval == 0 or \
step_cnt % save_interval == 0:
with torch.no_grad():
if step_cnt % save_interval == 0:
net.eval()
density_map_after = net(img_data)
density_map_after = density_map_after.detach().data.cpu().numpy()
net.train()
raw_patch = raw_patch.detach().data.cpu().numpy()
gt_data = gt_data.detach().data.cpu().numpy()
density_map = density_map.detach().data.cpu().numpy()
''' Display training loss and other train info'''
if step % disp_interval == 0:
gt_count = np.sum(gt_data.reshape(batch_size, -1), axis=-1)
et_count = np.sum(density_map.reshape(batch_size, -1), axis=-1)
duration = t.toc(average=False)
fps = disp_interval * batch_size / duration
# utils.save_results(img_data,gt_data,density_map, opt.expr_dir, fname=blob['fname'], epoch=epoch)
log_text = 'epoch: %04d,' % epoch + ' step %04d,' % step + ' Time: %.2fs,' % fps + \
' gt_cnt: %s,' % "{}".format(["%.1f" % gt_count.max(), "%.1f" % gt_count.mean(), "%.1f" % gt_count.min()]) + \
' et_cnt: %s,' % "{}".format(["%.1f" % et_count.max(), "%.1f" % et_count.mean(), "%.1f" % et_count.min()]) + \
' loss: %e' % float(loss_value)
log_print(log_text, opt)
re_cnt = True
if opt.use_tensorboard:
vis_exp.add_scalar_value('train_raw_loss', loss_value, step=step_cnt)
''' Save training image patch, and corresponding gt density map patch,
predicted density patch before and after loss backprop'''
if step_cnt % save_interval == 0:
for i in range(density_map.shape[0]):
density_gen.save_image(raw_patch[i], opt.expr_dir + './sup/', 'img_step%d_%d_0data.jpg' % (step_cnt, i))
density_gen.save_density_map(gt_data[i], opt.expr_dir + "./sup/", 'img_step%d_%d_1previous.jpg' % (step_cnt, i))
density_gen.save_density_map(density_map[i], opt.expr_dir + "./sup/", 'img_step%d_%d_2now.jpg' % (step_cnt, i))
for i in range(density_map_after.shape[0]):
density_gen.save_density_map(density_map_after[i], opt.expr_dir + "./sup/", 'img_step%d_%d_3after.jpg' % (step_cnt, i))
if re_cnt:
t.tic()
re_cnt = False
iter_time += iter_timer.toc(average=False)
load_timer.tic()
duration = outer_timer.toc(average=False)
logging.info("epoch {}: {} seconds; Path: {}".format(epoch, duration, opt.expr_dir))
logging.info("load/iter/cuda: {} vs {} vs {} seconds; iter: {}".format(load_time, iter_time, net.cudaTimer.tot_time, net.cudaTimer.calls))
net.cudaTimer.tot_time = 0
save_name = os.path.join(opt.expr_dir, '%06d.h5' % epoch)
network.save_net(save_name, net)
if scheduler != None:
scheduler.step()
logging.info(scheduler.get_lr())
logging.info("Train loss: {}".format(train_loss/data_loader_train.get_num_samples()))
if opt.use_tensorboard:
try:
vis_exp.add_scalar_value('train_loss', train_loss/data_loader_train.get_num_samples(), step=epoch)
except:
pass