-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsomdtwcyclic.m
333 lines (231 loc) · 11.5 KB
/
somdtwcyclic.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
classdef somdtw
properties
nodes = [];
nrnodes = 0;
%The raw data series
rawdata = {};
indim = 2;
nrseries = 0;
segmean = [];
segvar = [];
%The DTW-transformed data points
traindata = [];
trnodes = []; %The closest node, per latest DTW update
trindex = {}; %Index of the transformed point (for updating the transform)
nrtrdata = 0;
SampleNumber = 0;
ewmal = 0.99; %lambda exponential weighting for ewma
wl = 50; %Window length: Number of strokes used to calculate the mean
dw = [];
lr = 0.005;
spreadmatrix = [];
end
methods
function obj = somdtw(examplepos, nrnodes)
obj.nrnodes = nrnodes;
strlength = size(examplepos, 2);
indexvec = floor(1:((strlength-1)/(obj.nrnodes-1)):strlength);
obj.nodes = examplepos(:,indexvec);
obj.segmean = zeros(1,nrnodes-1);
obj.segvar = 0.001*ones(1,nrnodes-1);
end
function obj = add(obj, pos)
obj.nrseries = obj.nrseries + 1;
obj.rawdata{obj.nrseries} = pos;
obj.trindex{obj.nrseries} = [size(obj.traindata, 2) + 1, size(obj.traindata, 2) + obj.nrnodes];
C = [1 1 1.0;1 0 1.0]; %Prevents same datapoint being assigned to more than 1 node. (Other solution?)
[~, M] = somdistance(pos, obj.nodes);
[p,q,D,sc] = dpfast(M, C);
traindatatemp = zeros(obj.indim,obj.nrnodes);
nodebins = zeros(1,obj.nrnodes);
for i = 1:length(q)
traindatatemp(:,q(i)) = traindatatemp(:,q(i)) + pos(:,i);
nodebins(1,q(i)) = nodebins(1,q(i)) + 1;
end
for i = 1:obj.indim
traindatatemp(i, :) = traindatatemp(i, :) ./ nodebins;
end
obj.trnodes = [obj.trnodes, 1:obj.nrnodes];
obj.traindata = [obj.traindata, traindatatemp];
obj.nrtrdata = size(obj.traindata, 2);
%Reducing tainingdata to time window
while obj.nrseries > obj.wl
obj.rawdata = obj.rawdata(1 + 1:obj.wl + 1);
obj.trindex = obj.trindex(1 + 1:obj.wl + 1);
obj.trnodes = obj.trnodes(:,obj.nrnodes + 1:obj.nrnodes*(obj.wl + 1));
obj.traindata = obj.traindata(:,obj.nrnodes + 1:obj.nrnodes*(obj.wl + 1));
for i = length(obj.trindex)
obj.trindex{i} = obj.trindex{i} - obj.nrnodes;
end
obj.nrtrdata = size(obj.traindata, 2);
obj.nrseries = obj.nrseries - 1;
end
end
function obj = adaptDTW(obj, steps) %Updates SOM assignments, + mean + var
steps = min(steps, obj.nrseries);
seriesselect = randi(obj.nrseries, 1, steps);
for i = 1:steps
pos = obj.rawdata{seriesselect(i)};
[~, M] = somdistance(pos, obj.nodes);
C = [1 1 1.0;1 0 1.0]; %Prevents same datapoint being assigned to more than 1 node. (Other solution?)
[p,q,D,sc] = dpfast(M, C); %C can be removed for default matrix
index = obj.trindex{seriesselect(i)};
traindatatemp = zeros(obj.indim,obj.nrnodes);
nodebins = zeros(1,obj.nrnodes);
for j = 1:length(q)
traindatatemp(:,q(j)) = traindatatemp(:,q(j)) + pos(:,j);
nodebins(1,q(j)) = nodebins(1,q(j)) + 1;
end
for j = 1:obj.indim
traindatatemp(j, :) = traindatatemp(j, :) ./ nodebins;
end
obj = obj.ewma(pos,q); %updates mean + var
obj.traindata(:,index(1):index(2)) = traindatatemp;
obj.nrtrdata = size(obj.traindata, 2);
end
end
function obj = adapt(obj, steps)
totalsteps = steps;
stepcount = 0;
if obj.nrtrdata == 0;
error('Error: No trainingdata in adapt');
end
while stepcount < totalsteps
steps = min(steps, obj.nrtrdata);
stepcount = stepcount + steps;
obj.dw = zeros(obj.indim,obj.nrnodes);
dataselect = randi(obj.nrtrdata, 1, steps);
pos = obj.traindata(:,dataselect);
nodenr = obj.trnodes(:,dataselect);
%nodenr = obj.trnodes somdistance(pos, obj.nodes); %Get min distance node
%Training
for i=1:steps
obj.dw(:,nodenr(i)) = obj.dw(:,nodenr(i)) + (pos(:,i) - obj.nodes(:, nodenr(i)));
mini = mod(nodenr(i)-2,obj.nrnodes)+1;
plusi = mod(nodenr(i),obj.nrnodes)+1;
obj.dw(:,plusi) = obj.dw(:,plusi) + 0.3*(pos(:,i) - obj.nodes(:,plusi));
obj.dw(:,mini) = obj.dw(:,mini) + 0.3*(pos(:,i) - obj.nodes(:,mini));
end
obj.nodes = obj.nodes + obj.lr*obj.dw;
end
end
function obj = ewma(obj, pos, q) %exponentiall weighted moving average
dsegmean = zeros(obj.indim,obj.nrnodes-1);
dsegvar = zeros(obj.indim,obj.nrnodes-1);
neighbornodes = [];
neighbornodes(1,:) = q-1;
neighbornodes(2,:) = q+1;
nodebins = zeros(1,obj.nrnodes-1); %Number of datapoints per segment
nodesums = zeros(1,obj.nrnodes-1); %Sum per segment, for calculating mean/segment
for i = 1:length(q)
currentnodes = [];
currentseg = [];
%Collecting three adjacent nodes, if exist
if obj.nrnodes >= neighbornodes(1,i) && neighbornodes(1,i) > 0
currentnodes = [currentnodes, obj.nodes(:,neighbornodes(1,i))];
currentseg = [currentseg, neighbornodes(1,i)];
end
currentnodes = [currentnodes, obj.nodes(:,q(i))];
if obj.nrnodes >= neighbornodes(2,i) && neighbornodes(2,i) > 0
currentnodes = [currentnodes, obj.nodes(:,neighbornodes(2,i))];
currentseg = [currentseg, q(i)];
end
[winnernode, distance, r] = linesegdist(pos(:,i), currentnodes);
if 1 >= r && r >= 0 %Point within line segment
nodebins(1,currentseg(winnernode)) = nodebins(1,currentseg(winnernode)) + 1;
nodesums(1,currentseg(winnernode)) = nodesums(1,currentseg(winnernode)) + distance;
end
end
%-Calculating mean distance per segment of curve finished
nodemeanpos = [];
sq_dist = [];
for i = 1:(obj.nrnodes-1) %Updating stored avg + var
if nodebins(1,i) > 0
nodemeanpos(i) = nodesums(1,i) / nodebins(1,i);
sq_dist(i) = (nodemeanpos(i) - obj.segmean(i))^2;
obj.segmean(i) = obj.ewmal*obj.segmean(i) + (1-obj.ewmal)*nodemeanpos(i);
obj.segvar(i) = obj.ewmal*obj.segvar(i) + (1-obj.ewmal)*sq_dist(i);
end
end
end
function [obj totalnodeavg totalnodevar] = fullmean(obj)
totalnodebins = zeros(1,obj.nrnodes-1); %Number of curves
totalnodesums = zeros(1,obj.nrnodes-1); %As above, but for average of the means of the curves
totalnodevarbins = zeros(1,obj.nrnodes-1); %Number of curves
totalnodevarsums = zeros(1,obj.nrnodes-1); %As above, but for average of the means of the curves
for i = 1:obj.nrseries
pos = obj.rawdata{i};
[dummy, M] = somdistance(pos, obj.nodes);
C = [1 1 1.0;1 0 1.0]; %Prevents same datapoint being assigned to more than 1 node. (Other solution?)
[p,q,D,sc] = dpfast(M, C); %C can be removed for default matrix
obj = obj.ewma(pos,q); %updates mean + var
qdebug{i} = q;
dsegmean = zeros(obj.indim,obj.nrnodes-1);
dsegvar = zeros(obj.indim,obj.nrnodes-1);
neighbornodes = [];
neighbornodes(1,:) = (q-1);
neighbornodes(2,:) = (q+1);
nodebins = zeros(1,obj.nrnodes-1); %Number of datapoints per segment
nodesums = zeros(1,obj.nrnodes-1); %Sum per segment, for calculating mean/segment
for ii = 1:length(q)
currentnodes = [];
currentseg = [];
%Cop paste & edit from ewma code
%Collecting three adjacent nodes, if exist
if (obj.nrnodes > neighbornodes(1,ii)) && (neighbornodes(1,ii) > 0)
currentnodes = [currentnodes, obj.nodes(:,neighbornodes(1,ii))];
currentseg = [currentseg, neighbornodes(1,ii)];
end
currentnodes = [currentnodes, obj.nodes(:,q(ii))];
if (obj.nrnodes > neighbornodes(2,ii)) && (neighbornodes(2,ii) > 0)
currentnodes = [currentnodes, obj.nodes(:,neighbornodes(2,ii))];
currentseg = [currentseg, q(ii)];
end
[winnernode, distance, r] = linesegdist(pos(:,ii), currentnodes);
rdebug{i}(ii) = r;
if 1 >= r && r >= 0 %Point within line segment
nodebins(1,currentseg(winnernode)) = nodebins(1,currentseg(winnernode)) + 1;
nodesums(1,currentseg(winnernode)) = nodesums(1,currentseg(winnernode)) + distance;
end
end
nodemean(i,:) = nan(1,obj.nrnodes-1);
for ii = 1:(obj.nrnodes-1) %Mean per curve
if nodebins(1,ii) > 0
nodemean(i,ii) = nodesums(ii) ./ nodebins(ii);
if ii == 1
1;
end
else
nodemean(i,ii) = NaN;
end
end
%Preparing mean over all curves
for ii = 1:(obj.nrnodes-1) %Mean per curve
if (0 < nodebins(ii))
totalnodebins(ii) = totalnodebins(ii) + 1;
totalnodesums(ii) = totalnodesums(ii) + (nodemean(i,ii));
end
end
end
for ii = 1:(obj.nrnodes-1)
if totalnodebins(ii) > 0
totalnodeavg(ii) = totalnodesums(ii) ./ totalnodebins(ii);
end
end
%Variance - calculated afterwards, when avg is determined
for i = 1:obj.nrseries
for ii = 1:obj.nrnodes-1
if ~isnan(nodemean(i,ii))
totalnodevarbins(ii) = totalnodevarbins(ii) + 1;
totalnodevarsums(ii) = totalnodevarsums(ii) + (nodemean(i,ii) - totalnodeavg(ii))^2;
end
end
end
for ii = 1:(obj.nrnodes-1)
if totalnodevarbins(ii) > 1
totalnodevar(ii) = totalnodevarsums(ii) ./ (totalnodevarbins(ii)-1);
end
end
end
end% methods
end