-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmyEntry5.py
498 lines (436 loc) · 16.5 KB
/
myEntry5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# Leslie B. Klein
# Udacity CS101 Contest
# inputs: your food intake
# outputs: your percent RDI for many nutrients, including sugar
# food database: USDA National Nutrient Database for Standard Reference, Release 24
# DRI (Daily Recommended Intake) Tables: USDA National Agricultural Library
# foodIndex - a dictionary that stores food database ('ABBREV.txt')
# nutrientIndex - a dictionary that stores DRI for each nutrient in the foodIndex
# RDI (Recommended Daily Intake) values are read from 'RDI.csv' file
# The program supports reading in the RDI of multiple countries. (each stored in a separate text file)
# nutrientIndex is a dictionary organized like this:
# nutrientIndex[nutrient][country] is a list: [[rdivalues_country_1], [rdivalues_country2]]
# Would be interesting to compare graphs for the same food using n different sets of RDI values
# Since I do not know how to plot more than 1 set of data, I am running with 'US' only.
# col: nutrient
# [nutrient, weightUnit]
colHeadings = []
colHeadings.append(['Water', 6])
colHeadings.append(['Energ_Kcal', 7])
colHeadings.append(['Protein', 6])
colHeadings.append(['Lipid_Tot', 6])
colHeadings.append(['Ash', 6])
colHeadings.append(['Carbohydrt', 6])
colHeadings.append(['Fiber_TD', 6])
colHeadings.append(['Sugar_Tot', 6])
colHeadings.append(['Calcium', 3])
colHeadings.append(['Iron', 3])
colHeadings.append(['Magnesium', 3])
colHeadings.append(['Phosphorus', 3])
colHeadings.append(['Potassium', 3])
colHeadings.append(['Sodium', 3])
colHeadings.append(['Zinc', 3])
colHeadings.append(['Copper', 3])
colHeadings.append(['Manganese', 3])
colHeadings.append(['Selenium', 4])
colHeadings.append(['Vit_C', 3])
colHeadings.append(['Thiamin', 3])
colHeadings.append(['Riboflavin', 3])
colHeadings.append(['Niacin', 3])
colHeadings.append(['Panto_acid', 3])
colHeadings.append(['Vit_B6', 3])
colHeadings.append(['Folate_Tot', 4])
colHeadings.append(['Folic_acid', 4])
colHeadings.append(['Food_Folate', 4])
colHeadings.append(['Folate_DFE', 4])
colHeadings.append(['Choline_Tot', 3])
colHeadings.append(['Vit_B12', 4])
colHeadings.append(['Vit_A_IU', 5])
colHeadings.append(['Vit_A_RAE', 4])
colHeadings.append(['Retinol', 4])
colHeadings.append(['Alpha_Carot', 4])
colHeadings.append(['Beta_Carot', 4])
colHeadings.append(['Beta_Crypt', 4])
colHeadings.append(['Lycopene', 4])
colHeadings.append(['Lut+Zea', 4])
colHeadings.append(['Vit_E', 3])
colHeadings.append(['Vit_D_ug', 4])
colHeadings.append(['Vit_D_IU', 5])
colHeadings.append(['Vit_K', 4])
colHeadings.append(['FA_Sat', 6])
colHeadings.append(['FA_Mono', 6])
colHeadings.append(['FA_Poly', 6])
colHeadings.append(['Cholestrl', 3])
colHeadings.append(['GmWt_1',8])
colHeadings.append(['GmWt_Desc1', 8])
colHeadings.append(['GmWt_2', 8])
colHeadings.append(['GmWt_Desc2', 8])
colHeadings.append(['Refuse_Pct', 8])
# nutrients
nutrientNames = []
for i in range(len(colHeadings)-5):
nutrientNames.append(colHeadings[i])
units = []
units.append('L')
units.append('g/kg')
units.append('g/1000kcal')
units.append('mg')
units.append('ug')
units.append('IU')
units.append('g')
units.append('kcal')
units.append('') # '' means units are not applicable
def split_string(source, splitlist):
split_pos = [] # list of the positions of the separation characters
tokens = []
# store delimiter positions
for i in range(len(splitlist)):
separator = splitlist[i]
start = 0
while start < len(source):
end = source.find(separator, start)
if end == -1:
break
else:
split_pos.append(end)
start = end + 1
split_pos.sort()
# build token list
start = 0
for j in range(len(split_pos)):
end = split_pos[j]
if start == end:
tokens.append('~~')
else:
tokens.append(source[start:end])
start = end + 1
tokens.append(source[start:])
#remove \n
tokens[-1] = tokens[-1][:-1]
return tokens
# txt Food Index
# data source: US Dept of Agriculture
# Agriculture Research Service
# USDA National Nutrient Database for Standard Reference, Release 24
# ABBREVIATED database (flat file: ABBREV.txt) (2 MB)
foodIndex = {}
fhand = open('ABBREV.txt')
for line in fhand:
tokens = split_string(line, ['^'])
ndb = tokens[0][1:6]
foodIndex[ndb] = []
foodIndex[ndb].append(tokens[1][1:-1])
token_list = []
for i in range(2, len(tokens)):
if tokens[i] != '':
if tokens[i][0] != '~':
token_list.append(float(tokens[i]))
else:
token_list.append(tokens[i][1:-1])
foodIndex[ndb].append(token_list)
fhand.close()
'''
# text file: RDI Values per nutrient
# source: http://www.iom.edu/Activities/Nutrition/SummaryDRIs/~/media/Files/Activity%20Files/Nutrition/DRIs/5_Summary%20Table%20Tables%201-4.pdf
# USDA National Agricultural Library
# Dietary Reference Intakes: Recommended Intakes for Individuals
# pp. 2, 4, 5
# Note: nutrientIndex is structured to store multiple sets of RDI values for each nutrient
# Would be interesting to generate a plot for each country's RDI values
# Need to learn about plotting in python
#
'''
'''
# RDIValue = [[unit], ['19-30','19-30'], ['31-50','31-50'], ['51-70','51-70'] ,['>70', '>70']]
# ageGroup[0] is male
# ageGroup[1] is female
'''
##CountryRDIFiles = ['RDIUS.txt', 'RDIUK.txt', 'RDIAUSNZ.txt']
##countries = ['US', 'UK', 'AUS']
CountryRDIFiles = ['RDIUS.txt']
countries = ['US']
# initialize nutrientIndex dictionary
nutrientIndex = {}
for i in range(len(nutrientNames)):
nutrientIndex[nutrientNames[i][0]] = []
for j in range(len(countries)):
nutrientIndex[nutrientNames[i][0]].append([])
countryCnt = 0
for RDIfile in CountryRDIFiles:
rhand = open(RDIfile)
for line in rhand:
tokens = split_string(line, [','])
nutrient = tokens[0][1:-1]
unit = tokens[1]
rdiValues = [int(unit)]
nutrientIndex[nutrient][countryCnt].append(rdiValues)
for i in range(2,10,2):
rdiValues = [float(tokens[i]), float(tokens[i+1])]
nutrientIndex[nutrient][countryCnt].append(rdiValues)
countryCnt += 1
rhand.close()
def getNutrientNumber(nutrientNames, nutrient):
for i in range(len(nutrientNames)):
if nutrient == nutrientNames[i][0]:
return i
else:
return -1
def calcNutrientsConsumed(foodIndex, totalFood):
'''
foodIndex - index of food items
totalFood - list of food: [[descr, ndb, wtInGrams], ..., ]
'''
totalNutrientsConsumed = []
# set every elem to 0.
for i in range(len(nutrientNames)):
totalNutrientsConsumed.append(0.)
for food in totalFood:
foodNutrientsConsumed = []
ndb = food[1]
wtInGrams = food[2]
nutrientList = foodIndex[ndb][1][:-5]
for i in range(len(nutrientList)):
if nutrientList[i] == '':
nutrientList[i] = 0
per100Grams = nutrientList[i]
unitsConsumed = per100Grams / 100. * wtInGrams # each nutrient has its own unit; converted to mg to calc rdi
foodNutrientsConsumed.append(unitsConsumed)
totalNutrientsConsumed = sum_nutrients(totalNutrientsConsumed, foodNutrientsConsumed)
return totalNutrientsConsumed
def sum_nutrients(list1, list2):
if len(list1) != len(list2):
return 'list1 and list2 must be same size.'
else:
sumList = []
for i in range(len(list1)):
sumList.append(list1[i] + list2[i])
return sumList
def calcPercentRDI(nutrientIndex, nutrientNames, nutrientsConsumed, age, gender, bodyWeightKg):
'''
inputs:
nutrientIndex - index of nutrients
nutrientNames - list of nutrient names
nutrientsConsumed - list of nutrients consumed
age - a number
gender - a string; 'female' or 'male'
weight - in kg
returns:
percentRDI - a list (nutrient consumed)/(nutrient rdi), for each nutrient; [percent, percent, percent, ..., ]
'''
# initialize percentRDI
percentRDI = {}
for country in countries:
percentRDI[country] = []
if age >= 19 and age <=30:
ageGroup = 1
elif age > 30 and age <= 50:
ageGroup = 2
elif age > 50 and age <= 70:
ageGroup = 3
elif age > 70:
ageGroup = 4
else:
print 'age must be at least 19'
print 'assuming age is 19 - 30'
ageGroup = 1
if gender == 'female':
x = 1
else:
x = 0
for i in range(len(countries)):
for elem in nutrientNames:
number = getNutrientNumber(nutrientNames, elem[0])
nutrient_in_mg = convert_to_mg(nutrientsConsumed[number], elem[1], 1.)
if nutrientIndex[elem[0]][i] != []:
rdiUnit = nutrientIndex[elem[0]][i][0][0]
rdi = float(nutrientIndex[elem[0]][i][ageGroup][x])
rdi_in_mg = convert_to_mg(rdi, rdiUnit, bodyWeightKg)
percent = nutrient_in_mg/rdi_in_mg * 100
percentRDI[countries[i]].append(percent)
else:
percentRDI[countries[i]].append('No RDI.')
return percentRDI
def convert_to_mg(quantity, unit, bodyWeightKg):
if unit == 0:
return quantity * 1000000. # 1 L water = 1 kg; 1 kg = 1000000 mg
elif unit == 1:
return quantity * bodyWeightKg * 1000 # 1 g = 1000 mg
elif unit == 2:
return quantity * 1000
elif unit == 3:
return quantity # in mg
elif unit == 4:
return quantity/1000. # 1 mg = 1000 ug
elif unit == 5:
return quantity # IU; do not convert IU
elif unit == 6:
return quantity * 1000 # 1 g = 1000 mg
def calc_total_sugar(nutrientNames, nutrientsConsumed):
number = getNutrientNumber(nutrientNames, 'Sugar_Tot')
return nutrientsConsumed[number]
def print_percent_RDI(percentRDI, nutrientNames):
for country in countries:
for i in range(len(percentRDI[country])):
if percentRDI[country][i] != 'No RDI.':
print nutrientNames[i][0] + ': ' + str(percentRDI[country][i])
def getDataToPlot(nutrientNames, percentRDI):
x_list = {}
y_list = {}
for country in countries:
x_list[country] = []
y_list[country] = []
for country in countries:
for i in range(len(percentRDI[country])):
if percentRDI[country][i] != 'No RDI.':
y_list[country].append(percentRDI[country][i])
x_list[country].append(nutrientNames[i][0])
return x_list, y_list
def plotData(nutrientNames, percentRDI):
# need to make this work for len(countries) > 1
# This code was based on a tutorial here:
# http://scienceoss.com/bar-plot-with-custom-axis-labels/
# Boy, was I lucky to find it!!!
'''
x_list - nutrientsConsumed
y_list - percent_of_rdi values
'''
#from matplotlib import pyplot
from matplotlib import pylab as p
fig = p.figure()
ax = fig.add_subplot(1, 1, 1)
x_list, y_list = getDataToPlot(nutrientNames, percentRDI)
# as written, only works for 1 country
for country in countries:
# number of bars
N = len(x_list[country])
# bar height
height = y_list[country]
# x-axis
ind = range(N) # x locations
# plot data
ax.bar(ind, height, align='center')
# set labels
ax.set_xlabel('Nutrients Consumed')
ax.set_xticks(ind)
xlabels = x_list[country]
ax.set_xticklabels(xlabels)
fig.autofmt_xdate()
# create a y-label
ax.set_ylabel('Percent RDI')
p.show()
## Go Shopping!!!!
## Use this procedure to get a subset of food from the US gov data base (ABBREV.txt)
## Then manually cut and paste to make a list of food for a meal.
## Append to each foodList [ food, ndb# ] a wtInGrams => [ food, ndb#, wtInGrams ]
def searchForFoodItem(item):
'''
item - a string identifying a food item; for ex, 'CEREAL'
'''
ITEM = item.upper()
count = 0
foodList = []
for ndb in foodIndex:
descr = foodIndex[ndb][0]
res = descr.find(ITEM)
if res != -1:
count = count + 1
foodList.append([descr[:40], ndb])
print str(count) + ' items found matching ' + item
return foodList
## test case: CHEESE,GRUYERE, 50g
##nutrientsConsumed = calcNutrientsConsumed(foodIndex, [['CHEESE,GRUYERE', '01023', 50.]])
##percentRDI = calcPercentRDI(nutrientIndex, nutrientNames, nutrientsConsumed, age=20, gender='female', bodyWeightKg=55)
##print_percent_RDI(percentRDI, nutrientNames)
'''
Results from www.fitday.com (my results):
Protein: 32 (41) (bodyWeightKg = 55)
Carbs: 0 (0.1)
Fiber: 0 (0)
Calcium: 42 (50)
Iron: 1 (0.5)
Magnesium: 6 (5.1)
Phosphorus: 43 (43.2)
Zinc: 24 (24.4)
Cooper: 2 (1.8)
Manganese: 0 (0.5)
Selenium: 13 (13.2)
Vit C: 0 (0)
Thiamin: 3 (2.7)
Riboflavin: 13 (12.6)
Niacin: 0 (0.4)
Panto Acid: 6 (5.6)
Vit B-6: 3 (3.1)
Vit B-12: 33 (33.3)
Vit A: 19 (19.4)
Vit E: 1 (0.9)
Vit D: 0 (2)
'''
# Define meals
# Hungry? Change this value accordingly.
wtInGrams = 75.
breakfast1 = [ ['CEREALS RTE,QUAKER,TSTD OATMEAL SUPREME ', '08545', 1.2*wtInGrams], \
['MILK,WHL,3.25% MILKFAT,WO/ ADDED VIT A &', '01211', 2*wtInGrams], \
['BANANAS,RAW', '09040', .5*wtInGrams], \
['ALMONDS,DRY RSTD,WO/SALT', '12063', .2*wtInGrams] ]
lunch1 = [ ['TOMATOES,RED,RIPE,RAW,YEAR RND AVERAGE', '11529', wtInGrams], \
['LETTUCE,COS OR ROMAINE,RAW', '11251', .5*wtInGrams], \
['OLIVES,RIPE,CND (SMALL-EXTRA LRG)', '09193', wtInGrams], \
['CHEESE,FETA', '01019', 1.2*wtInGrams], \
['AVOCADOS,RAW,ALL COMM VAR', '09037', wtInGrams], \
['VINEGAR,BALSAMIC', '02069', .5*wtInGrams] ]
dinner1 = [ ['SALMON,ATLANTIC,FARMED,CKD,DRY HEAT', '15237', 4*wtInGrams],\
['COLLARDS,CKD,BLD,DRND,WO/SALT', '11162', 2*wtInGrams],\
['SWEET POTATO,CKD,BLD,WO/ SKN,W/ SALT', '11876', wtInGrams],\
['CABBAGE,RED,CKD,BLD,DRND,W/SALT', '11752', wtInGrams] ]
drinks1 = [ ['COFFEE,INST,REG,PDR,HALF THE CAFFEINE', '14203', 4*wtInGrams],\
['TEA,RTD,LIPTON BRISK ICED TEA,W/ LEMON F', '14476', 2*wtInGrams] ]
breakfast2 = [ ["MCDONALD'S,SCRMBLD EGGS", '21320',2*wtInGrams ],\
["MCDONALD'S,BISCUIT,LRG SIZE", '21460', wtInGrams],\
['COFFEE,INST,REG,PDR,HALF THE CAFFEINE', '14203', 2*wtInGrams] ]
lunch2 = [ ["MCDONALD'S,CAESAR SALAD W/ GRILLED CHICK", '21370', 2*wtInGrams],\
['CARBONATED BEV,COLA,CONTAINS CAFFEINE', '14400', 2*wtInGrams],\
["MCDONALD'S,MCFLURRY W/ OREO COOKIES", '21339', wtInGrams] ]
dinner2 = [ ["MCDONALD'S,DOUBLE CHEESEBURGER", '21344', 2*wtInGrams],\
["MCDONALD'S,FRENCH FR", '21238', 2*wtInGrams], \
['CARBONATED BEV,COLA,CONTAINS CAFFEINE', '14400', 2*wtInGrams] ]
def mealPlan(list_of_meals):
totalFood = []
for elem in list_of_meals:
totalFood = totalFood + elem
return totalFood
# UNCOMMENT 1 of the meal plans
## Healthful Plan
totalFood1 = mealPlan([breakfast1, lunch1, dinner1, drinks1])
consumed = calcNutrientsConsumed(foodIndex, totalFood1)
#### McDonald's Food Plan
##totalFood2 = mealPlan([breakfast2, lunch2, dinner2])
##consumed = calcNutrientsConsumed(foodIndex, totalFood2)
def analyzeFood():
bodyWeight = raw_input('Enter your bodyWeight in Kg (default = 55): ')
if (not (bodyWeight not in range(30, 200))) or (bodyWeight == ''):
bodyWeightKg = 55.
print 'bodyWeight set to ', bodyWeightKg
gender = raw_input("Enter your gender (male or female; default = female): ")
if (gender != 'male' and gender != 'female'):
gender = 'female'
print 'gender set to ', gender
age = raw_input("Enter your age (default = 20): ")
if (not(age.isdigit()) or (int(age) not in range(19, 120))):
age = 20
print 'age set to ', age
print
percentRDI = calcPercentRDI(nutrientIndex, nutrientNames, consumed, age=20, gender='female', bodyWeightKg=55.)
print 'Total Calories Consumed (kcal): ', consumed[1]
print 'Total Protein Consumed (g): ', consumed[2]
print 'Total Fat Consumed (g): ', consumed[3]
print 'Saturated Fat Consumed (g): ', consumed[42]
print 'Total Sodium Consumed (mg): ', consumed[13]
print 'Total Carbohydrates Consumed (g): ', consumed[5]
print 'Total Sugar Consumed (g) : ', consumed[7]
print 'New Sugar recommendations:'
print 'adult men - 36 g/day'
print 'adult women - 20 g/day'
print 'children - 12 g/day)'
print 'Plotting RDI vs nutrients...'
plotData(nutrientNames, percentRDI)